No Arabic abstract
Superfluid has been realized in Helium-4, Helium-3 and ultra-cold atoms. It has been widely used in making high-precision devices and also in cooling various systems. There have been extensive experimental search for possible exciton superfluid (ESF) in semiconductor electron-hole bilayer (EHBL) systems below liquid Helium temperature. However, exciton superfluid are meta-stable and will eventually decay through emitting photons. Here we study quantum nature of photons emitted from the excitonic superfluid (ESF) phase in the semiconductor EHBL and find that the light emitted from the excitonic superfluid has unique and unusual features not shared by any other atomic or condensed matter systems. We show that the emitted photons along the direction perpendicular to the layer are in a coherent state, those along all tilted directions are in a two modes squeezed state. We determine the two mode squeezing spectra, the angle resolved power spectrum, the line shapes of both the momentum distribution curve (MDC) and the energy distribution curve (EDC). From the two photon correlation functions, we find there are photon bunching, the photo-count statistics is super-Poissonian. We discuss how several important parameters such as the chemical potential, the exciton decay rate, the quasiparticle energy spectrum and the dipole-dipole interaction strength between the excitons in our theory can be extracted from the experimental data and comment on available experimental data on both EDC and MDC.
We propose a state of excitonic solid for double layer two dimensional electron hole systems in transition metal dicalcogenides stacked on opposite sides of thin layers of BN. Properties of the exciton lattice such as its Lindemann ratio and possible supersolid behaviour are studied. We found that the solid can be stabilized relative to the fluid by the potential due to the BN.
Superfluidity in e-h bilayers in graphene and GaAs has been predicted many times but not observed. A key problem is how to treat the screening of the Coulomb interaction for pairing. Different mean-field theories give dramatically different conclusions, and we test them against diffusion Monte-Carlo calculations. We get excellent agreement with the mean-field theory that uses screening in the superfluid state, but large discrepancies with the others. The theory predicts no superfluidity in existing devices and gives pointers for new devices to generate superfluidity.
A real-space formulation is given for the recently discussed exciton condensate in a symmetrically biased graphene bilayer. We show that in the continuum limit an oddly-quantized vortex in this condensate binds exactly one zero mode per valley index of the bilayer. In the full lattice model the zero modes are split slightly due to intervalley mixing. We support these results by an exact numerical diagonalization of the lattice Hamiltonian. We also discuss the effect of the zero modes on the charge content of these vortices and deduce some of their interesting properties.
We present a systematic study of the exciton/electron-hole plasma photoluminescence dynamics in bulk GaAs for various lattice temperatures and excitation densities. The competition between the exciton and electron-hole pair recombination dominates the onset of the luminescence. We show that the metal-to-insulator transition, induced by temperature and/or excitation density, can be directly monitored by the carrier dynamics and the time-resolved spectral characteristics of the light emission. The dependence on carrier density of the photoluminescence rise time is strongly modified around a lattice temperature of 49 K, corresponding to the exciton binding energy (4.2 meV). In a similar way, the rise-time dependence on lattice temperature undergoes a relatively abrupt change at an excitation density of 120-180x10^15 cm^-3, which is about five times greater than the calculated Mott density in GaAs taking into account many body corrections.
Polaritons are quasiparticles arising from the strong coupling of electromagnetic waves in cavities and dipolar oscillations in a material medium. In this framework, localized surface plasmon in metallic nanoparticles defining optical nanocavities have attracted increasing interests in the last decade. This interest results from their sub-diffraction mode volume, which offers access to extremely high photonic densities by exploiting strong scattering cross-sections. However, high absorption losses in metals have hindered the observation of collective coherent phenomena, such as condensation. In this work we demonstrate the formation of a non-equilibrium room temperature plasmon-exciton-polariton condensate with a long range spatial coherence, extending a hundred of microns, well over the excitation area, by coupling Frenkel excitons in organic molecules to a multipolar mode in a lattice of plasmonic nanoparticles. Time-resolved experiments evidence the picosecond dynamics of the condensate and a sizeable blueshift, thus measuring for the first time the effect of polariton interactions in plasmonic cavities. Our results pave the way to the observation of room temperature superfluidity and novel nonlinear phenomena in plasmonic systems, challenging the common belief that absorption losses in metals prevent the realization of macroscopic quantum states.