Do you want to publish a course? Click here

Edge Transport in the Trivial Phase of InAs/GaSb

76   0   0.0 ( 0 )
 Added by Fabrizio Nichele
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present transport and scanning SQUID measurements on InAs/GaSb double quantum wells, a system predicted to be a two-dimensional topological insulator. Top and back gates allow independent control of density and band offset, allowing tuning from the trivial to the topological regime. In the trivial regime, bulk conductivity is quenched but transport persists along the edges, superficially resembling the predicted helical edge-channels in the topological regime. We characterize edge conduction in the trivial regime in a wide variety of sample geometries and measurement configurations, as a function of temperature, magnetic field, and edge length. Despite similarities to studies claiming measurements of helical edge channels, our characterization points to a non-topological origin for these observations.



rate research

Read More

190 - G. C. Dyer , X. Shi , B. V. Olson 2016
Direct current (DC) transport and far infrared photoresponse were studied an InAs/GaSb double quantum well with an inverted band structure. The DC transport depends systematically upon the DC bias configuration and operating temperature. Surprisingly, it reveals robust edge conduction despite prevalent bulk transport in our device of macroscopic size. Under 180 GHz far infrared illumination at oblique incidence, we measured a strong photovoltaic response. We conclude that quantum spin Hall edge transport produces the observed transverse photovoltages. Overall, our experimental results support a hypothesis that the photoresponse arises from direct coupling of the incident radiation field to edge states.
The robustness of quantum edge transport in InAs/GaSb quantum wells in the presence of magnetic fields raises an issue on the fate of topological phases of matter under time-reversal symmetry breaking. A peculiar band structure evolution in InAs/GaSb quantum wells is revealed: the electron subbands cross the heavy hole subbands but anticross the light hole subbands. The topologically protected band crossing point (Dirac point) of the helical edge states is pulled to be close to and even buried in the bulk valence bands when the system is in a deeply inverted regime, which is attributed to the existence of the light hole subbands. A sizable Zeeman energy gap verified by the effective g-factors of edge states opens at the Dirac point by an in-plane or perpendicular magnetic field, however it can also be hidden in the bulk valance bands. This provides a plausible explanation for the recent observation on the robustness of quantum edge transport in InAs/GaSb quantum wells subjected to strong magnetic fields.
We have investigated low-temperature electronic transport on InAs/GaSb double quantum wells, a system which promises to be electrically tunable from a normal to a topological insulator. Hall bars of $50,mu$m in length down to a few $mu$m gradually develop a pronounced resistance plateau near charge-neutrality, which comes along with distinct non-local transport along the edges. Plateau resistances are found to be above or below the quantized value expected for helical edge channels. We discuss these results based on the interplay between imperfect edges and residual local bulk conductivity.
A Corbino ring geometry is utilized to analyze edge and bulk conductance of InAs/GaSb quantum well structures. We show that edge conductance exists in the trivial regime of this theoretically-predicted topological system with a temperature insensitive linear resistivity per unit length in the range of 2 kOhm/um. A resistor network model of the device is developed to decouple the edge conductance from the bulk conductance, providing a quantitative technique to further investigate the nature of this trivial edge conductance, conclusively identified here as being of n-type.
Transport measurements are performed on InAs/GaSb double quantum wells at zero and finite magnetic fields applied parallel and perpendicular to the quantum wells. We investigate a sample in the inverted regime where electrons and holes coexist, and compare it with another sample in the non-inverted semiconducting regime. Activated behavior in conjunction with a strong suppression of the resistance peak at the charge neutrality point in a parallel magnetic field attest to the topological hybridization gap between electron and hole bands in the inverted sample. We observe an unconventional Landau level spectrum with energy gaps modulated by the magnetic field applied perpendicular to the quantum wells. This is caused by strong spin-orbit interaction provided jointly by the InAs and the GaSb quantum wells.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا