No Arabic abstract
In recent years, temperature scales in cool supergiants (CSGs) have been disputed, and the possibility that spectral types (SpTs) do not depend primarily on temperature has been raised. We explore the relations between different observed parameters and the capability of deriving accurate intrinsic stellar parameters from them through the analysis of the largest spectroscopic sample of CSGs to date from SMC and LMC. We explore possible correlations between different observational parameters, also making use of near- and mid-infrared colours and literature on photometric variability. Direct comparison between the behaviour of atomic lines (Fe I, Ti I, and Ca II) in the observed spectra and synthetic atmospheric models provides compelling evidence that effective temperature is the prime underlying variable driving the SpT sequence in CSGs. However, there is a clear correlation between SpT and luminosity, with later ones tending to correspond to more luminous stars with heavier mass loss. The population of CSGs in the SMC is characterised by a higher degree of spectral variability, early spectral types (centred on type K1) and low mass-loss rates (at least as measured by dust-sensitive mid-infrared colours). The population in the LMC displays less spectroscopic variability and later spectral types. The distribution of spectral types is not single-peaked. Instead, the brightest CSGs have a significantly different distribution from less luminous objects, presenting mostly M subtypes (centred on M2), and increasing mass-loss rates for later types. In conclusion, the observed properties of CSGs in the SMC and the LMC cannot be described correctly by standard evolutionary models. The very strong correlation between spectral type and bolometric luminosity, supported by all data from the Milky Way, cannot be reproduced at all by current evolutionary tracks.
The characterisation of the multiplicity of high-mass stars is of fundamental importance to understand their evolution, the diversity of observed core-collapse supernovae and the formation of gravitational wave progenitor systems. Despite that, until recently, one of the final phases of massive star evolution -- the cool supergiant phase -- has received comparatively little attention. In this study we aim to explore the multiplicity among the cool supergiants (CSGs) in the Large and Small Magellanic Clouds (LMC and SMC, respectively). To do this we compile extensive archival radial velocity (RV) measurements for over 1000 CSGs from the LMC and SMC, spanning a baseline of over 40 years. By statistically correcting the RV measurements of each stellar catalogue to the Gaia DR2 reference frame we are able to effectively compare these diverse observations. We identify 45 CSGs where RV variations cannot be explained through intrinsic variability, and are hence considered binary systems. We obtain a minimum binary fraction of $15pm4%$ for the SMC and of $14pm5%$ for the LMC. Combining these results, we determine a minimum binary fraction of $15pm3%$ for CSGs. These results are in good agreement with previous results which apply a correction to account for observational biases. These results add strength to the hypothesis that the binary fraction of CSGs is significantly lower than their main-sequence counterparts. Going forward, we stress the need for long-baseline multi-epoch spectroscopic surveys to cover the full parameter space of CSG binary systems.
In this study, we conduct a pilot program aimed at the red supergiant population of the Magellanic Clouds. We intend to extend the current known sample to the unexplored low end of the brightness distribution of these stars, building a more representative dataset with which to extrapolate their behaviour to other Galactic and extra-galactic environments. We select candidates using only near infrared photometry, and with medium resolution multi-object spectroscopy, we perform spectral classification and derive their line-of-sight velocities, confirming the nature of the candidates and their membership to the clouds. Around two hundred new RSGs have been detected, hinting at a yet to be observed large population. Using near and mid infrared photometry we study the brightness distribution of these stars, the onset of mass-loss and the effect of dust in their atmospheres. Based on this sample, new a priori classification criteria are investigated, combining mid and near infrared photometry to improve the observational efficiency of similar programs as this.
We report new 5.5 GHz radio observations of the massive star cluster Westerlund 1, taken by the Australia Telescope Compact Array, detecting nine of the ten yellow hypergiants (YHGs) and red supergiants (RSGs) within the cluster. Eight of nine sources are spatially resolved. The nebulae associated with the YHGs Wd1-4a, -12a and -265 demonstrate a cometary morphology - the first time this phenomenon has been observed for such stars. This structure is also echoed in the ejecta of the RSGs Wd1-20 and -26; in each case the cometary tails are directed away from the cluster core. The nebular emission around the RSG Wd1-237 is less collimated than these systems but once again appears more prominent in the hemisphere facing the cluster. Considered as a whole, the nebular morphologies provide compelling evidence for sculpting via a physical agent associated with Westerlund 1, such as a cluster wind.
We have identified seven red supergiants (RSGs) in the Large Magellanic Cloud (LMC) and four RSGs in the Small Magellanic Cloud (SMC), all of which have spectral types that are considerably later than the average type observed in their parent galaxy. Using moderate-resolution optical spectrophotometry and the MARCS stellar atmosphere models, we determine their physical properties and place them on the H-R diagram for comparison with the predictions of current stellar evolutionary tracks. The radial velocities of these stars suggest that they are likely all members of the Clouds rather than foreground dwarfs or halo giants. Their locations in the H-R diagram also show us that those stars are cooler than the current evolutionary tracks allow, appearing to the right of the Hayashi limit, a region in which stars are no longer in hydrodynamic equilibrium. These stars exhibit considerable variability in their V magnitudes, and three of these stars also show changes in their effective temperatures (and spectral types) on the time-scales of months. One of these stars, [M2002] SMC 055188, was caught in an M4.5 I state, as late as that seen in HV 11423 at its recent extreme: considerable later, and cooler, than any other supergiant in the SMC. In addition, we find evidence of variable extinction due to circumstellar dust and changes in the stars luminosities, also consistent with our recent findings for HV 11423 - when these stars are hotter they are also dustier and more luminous. We suggest that these stars have unusual properties because they are in an unstable (and short-lived) evolutionary phase.
High-resolution spectra for 24 SMC and Galactic B-type supergiants have been analysed to estimate the contributions of both macroturbulence and rotation to the broadening of their metal lines. Two different methodologies are considered, viz. goodness-of-fit comparisons between observed and theoretical line profiles and identifying zeros in the Fourier transforms of the observed profiles. The advantages and limitations of the two methods are briefly discussed with the latter techniques being adopted for estimated projected rotational velocities (vsini) but the former being used to estimate macroturbulent velocities. Only one SMC supergiant, SK 191, shows a significant degree of rotational broadening (vsini $simeq$ 90 kms). For the remaining targets, the distribution of projected rotational velocities are similar in both our Galactic and SMC samples with larger values being found at earlier spectral types. There is marginal evidence for the projected rotational velocities in the SMC being higher than those in the Galactic targets but any differences are only of the order of 5-10 kms, whilst evolutionary models predict differences in this effective temperature range of typically 20 to 70 kms. The combined sample is consistent with a linear variation of projected rotational velocity with effective temperature, which would imply rotational velocities for supergiants of 70 kms at an effective temperature of 28 000 K (approximately B0 spectral type) decreasing to 32 kms at 12 000 K (B8 spectral type). For all targets, the macroturbulent broadening would appear to be consistent with a Gaussian distribution (although other distributions cannot be discounted) with an $frac{1}{e}$ half-width varying from approximately 20 kms at B8 to 60 kms at B0 spectral types.