Do you want to publish a course? Click here

Asymmetric Ejecta of Cool Supergiants and Hypergiants in the Massive Cluster Westerlund 1

71   0   0.0 ( 0 )
 Added by Holly Andrews
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report new 5.5 GHz radio observations of the massive star cluster Westerlund 1, taken by the Australia Telescope Compact Array, detecting nine of the ten yellow hypergiants (YHGs) and red supergiants (RSGs) within the cluster. Eight of nine sources are spatially resolved. The nebulae associated with the YHGs Wd1-4a, -12a and -265 demonstrate a cometary morphology - the first time this phenomenon has been observed for such stars. This structure is also echoed in the ejecta of the RSGs Wd1-20 and -26; in each case the cometary tails are directed away from the cluster core. The nebular emission around the RSG Wd1-237 is less collimated than these systems but once again appears more prominent in the hemisphere facing the cluster. Considered as a whole, the nebular morphologies provide compelling evidence for sculpting via a physical agent associated with Westerlund 1, such as a cluster wind.

rate research

Read More

Massive stars and their stellar winds are important for a number of feedback processes. The mass lost in the stellar wind can help determine the end-point of the star as a NS or a BH. However, the impact of mass-loss on the post-Main Sequence evolutionary stage of massive stars is not well understood. Westerlund 1 is an ideal astrophysical laboratory in which to study massive stars and their winds in great detail over a large range of different evolutionary phases. Aims: We aim to study the radio emission from Westerlund 1, in order to measure radio fluxes from the population of massive stars, and determine mass-loss rates and spectral indices where possible. Methods: Observations were carried out in 2015 and 2016 with the Australia telescope compact array (ATCA) at 5.5 and 9 GHz using multiple configurations, with maximum baselines ranging from 750m to 6km. Results: 30 stars were detected in the radio from the fully concatenated dataset, 10 of which were WRs (predominantly late type WN stars), 5 YHGs, 4 RSGs, 1 LBV star, the sgB[e] star W9, and several O and B supergiants. New source detections in the radio were found for 5 WR stars, and 5 OB supergiants. These detections have led to evidence for 3 new OB supergiant binary candidates, inferred from derived spectral index limits. Conclusions: Spectral indices and index limits were determined for massive stars in Westerlund 1. For cluster members found to have partially optically thick emission, mass-loss rates were calculated. Under the approximation of a thermally emitting stellar wind and a steady mass-loss rate, clumping ratios were then estimated for 8 WRs. Diffuse radio emission was detected throughout the cluster. Detections of knots of radio emission with no known stellar counterparts indicate the highly clumped structure of this intra-cluster medium, likely shaped by a dense cluster wind.
An unsettled question concerning the formation and distribution of massive stars is whether they must be born in massive clusters and, if found in less dense environments, whether they must have migrated there. With the advent of wide-area digital photometric surveys, it is now possible to identify massive stars away from prominent Galactic clusters without bias. In this study we consider 40 candidate OB stars found in the field around the young massive cluster, Westerlund 2, by Mohr-Smith et al (2017): these are located inside a box of 1.5x1.5 square degrees and are selected on the basis of their extinctions and K magnitudes. We present VLT/X-shooter spectra of two of the hottest O stars, respectively 11 and 22 arcmin from the centre of Westerlund 2. They are confirmed as O4V stars, with stellar masses likely to be in excess of 40 Msun. Their radial velocities relative to the non-binary reference object, MSP 182, in Westerlund 2 are -29.4 +/- 1.7 and -14.4 +/- 2.2 km/s, respectively. Using Gaia DR2 proper motions we find that between 8 and 11 early O/WR stars in the studied region (including the two VLT targets, plus WR 20c and WR 20aa) could have been ejected from Westerlund 2 in the last one million years. This represents an efficiency of massive-star ejection of up to 25%. On sky, the positions of these stars and their proper motions show a near N--S alignment. We discuss the possibility that these results are a consequence of prior sub-cluster merging combining with dynamical ejection.
186 - Ben Davies , Emma Beasor 2019
Galactic, young massive star clusters are approximately coeval aggregates of stars, close enough to resolve the individual stars, massive enough to have produced large numbers of massive stars, and young enough for these stars to be in a pre-supernova state. As such these objects represent powerful natural laboratories in which to study the evolution of massive stars. To be used in this way, it is crucial that accurate and precise distances are known, since this affects both the inferred luminosities of the cluster members and the age estimate for the cluster itself. Here we present distance estimates for three star clusters rich in Red Supergiants ($chi$ Per, NGC 7419 and Westerlund 1) based on their average astrometric parallaxes $bar{pi}$ in Gaia Data Release 2, where the measurement of $bar{pi}$ is obtained from a proper-motion screened sample of spectroscopically-confirmed cluster members. We determine distances of $d=2.25^{+0.16}_{-0.14}$kpc, $d=3.00^{+0.35}_{-0.29}$kpc, and $d=3.87^{+0.95}_{-0.64}$kpc for the three clusters respectively. We find that the dominant source of error is that in Gaias zero-point parallax offset $pi_{rm ZP}$, and we argue that more precise distances cannot be determined without an improved characterization of this quantity.
Westerlund 1 is the most important starburst cluster in the Galaxy due to its massive star content. We have performed BVIc and JKs photometry to investigate the initial mass function (IMF). By comparing the observed color with the spectral type - intrinsic color relation, we obtain the mean interstellar reddening of <E(B-V)>=4.19+/-0.23 and <E(J-Ks)>=1.70+/-0.21. Due to the heavy extinction toward the cluster, the zero-age main sequence fitting method based on optical photometry proved to be inappropriate for the distance determination, while the near-infrared photometry gave a reliable distance to the cluster -- 3.8 kpc from the empirical relation. Using the recent theoretical stellar evolution models with rotation, the age of the cluster is estimated to be 5.0+/-1.0 Myr. We derived the IMF in the massive part and obtained a fairly shallow slope of {Gamma} = -0.8 +/- 0.1. The integration of the IMF gave a total mass for the cluster in excess of 5.0 x 10^4 solar mass. The IMF shows a clear radial variation indicating the presence of mass segregation. We also discuss the possible star formation history of Westerlund 1 from the presence of red supergiants and relatively low-luminosity yellow hypergiants.
142 - R. Dorda , L. R. Patrick 2020
The characterisation of the multiplicity of high-mass stars is of fundamental importance to understand their evolution, the diversity of observed core-collapse supernovae and the formation of gravitational wave progenitor systems. Despite that, until recently, one of the final phases of massive star evolution -- the cool supergiant phase -- has received comparatively little attention. In this study we aim to explore the multiplicity among the cool supergiants (CSGs) in the Large and Small Magellanic Clouds (LMC and SMC, respectively). To do this we compile extensive archival radial velocity (RV) measurements for over 1000 CSGs from the LMC and SMC, spanning a baseline of over 40 years. By statistically correcting the RV measurements of each stellar catalogue to the Gaia DR2 reference frame we are able to effectively compare these diverse observations. We identify 45 CSGs where RV variations cannot be explained through intrinsic variability, and are hence considered binary systems. We obtain a minimum binary fraction of $15pm4%$ for the SMC and of $14pm5%$ for the LMC. Combining these results, we determine a minimum binary fraction of $15pm3%$ for CSGs. These results are in good agreement with previous results which apply a correction to account for observational biases. These results add strength to the hypothesis that the binary fraction of CSGs is significantly lower than their main-sequence counterparts. Going forward, we stress the need for long-baseline multi-epoch spectroscopic surveys to cover the full parameter space of CSG binary systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا