Do you want to publish a course? Click here

B-type supergiants in the SMC: Rotational velocities and implications for evolutionary models

55   0   0.0 ( 0 )
 Added by Philip Dufton
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

High-resolution spectra for 24 SMC and Galactic B-type supergiants have been analysed to estimate the contributions of both macroturbulence and rotation to the broadening of their metal lines. Two different methodologies are considered, viz. goodness-of-fit comparisons between observed and theoretical line profiles and identifying zeros in the Fourier transforms of the observed profiles. The advantages and limitations of the two methods are briefly discussed with the latter techniques being adopted for estimated projected rotational velocities (vsini) but the former being used to estimate macroturbulent velocities. Only one SMC supergiant, SK 191, shows a significant degree of rotational broadening (vsini $simeq$ 90 kms). For the remaining targets, the distribution of projected rotational velocities are similar in both our Galactic and SMC samples with larger values being found at earlier spectral types. There is marginal evidence for the projected rotational velocities in the SMC being higher than those in the Galactic targets but any differences are only of the order of 5-10 kms, whilst evolutionary models predict differences in this effective temperature range of typically 20 to 70 kms. The combined sample is consistent with a linear variation of projected rotational velocity with effective temperature, which would imply rotational velocities for supergiants of 70 kms at an effective temperature of 28 000 K (approximately B0 spectral type) decreasing to 32 kms at 12 000 K (B8 spectral type). For all targets, the macroturbulent broadening would appear to be consistent with a Gaussian distribution (although other distributions cannot be discounted) with an $frac{1}{e}$ half-width varying from approximately 20 kms at B8 to 60 kms at B0 spectral types.



rate research

Read More

195 - M. Fraser 2010
High resolution optical spectra of 57 Galactic B-type supergiant stars have been analyzed to determine their rotational and macroturbulent velocities. In addition, their atmospheric parameters (effective temperature, surface gravity and microturbulent velocity) and surface nitrogen abundances have been estimated using a non-LTE grid of model atmospheres. Comparisons of the projected rotational velocities have been made with the predictions of stellar evolutionary models and in general good agreement was found. However for a small number of targets, their observed rotational velocities were significantly larger than predicted, although their nitrogen abundances were consistent with the rest of the sample. We conclude that binarity may have played a role in generating their large rotational velocities. No correlation was found between nitrogen abundances and the current projected rotational velocities. However a correlation was found with the inferred projected rotational velocities of the main sequence precursors of our supergiant sample. This correlation is again in agreement with the predictions of single star evolutionary models that incorporate rotational mixing. The origin of the macroturbulent and microturbulent velocity fields is discussed and our results support previous theoretical studies that link the former to sub-photospheric convection and the latter to non-radial gravity mode oscillations. In addition, we have attempted to identify differential rotation in our most rapidly rotating targets.
48 - Ricardo Dorda 2016
In recent years, temperature scales in cool supergiants (CSGs) have been disputed, and the possibility that spectral types (SpTs) do not depend primarily on temperature has been raised. We explore the relations between different observed parameters and the capability of deriving accurate intrinsic stellar parameters from them through the analysis of the largest spectroscopic sample of CSGs to date from SMC and LMC. We explore possible correlations between different observational parameters, also making use of near- and mid-infrared colours and literature on photometric variability. Direct comparison between the behaviour of atomic lines (Fe I, Ti I, and Ca II) in the observed spectra and synthetic atmospheric models provides compelling evidence that effective temperature is the prime underlying variable driving the SpT sequence in CSGs. However, there is a clear correlation between SpT and luminosity, with later ones tending to correspond to more luminous stars with heavier mass loss. The population of CSGs in the SMC is characterised by a higher degree of spectral variability, early spectral types (centred on type K1) and low mass-loss rates (at least as measured by dust-sensitive mid-infrared colours). The population in the LMC displays less spectroscopic variability and later spectral types. The distribution of spectral types is not single-peaked. Instead, the brightest CSGs have a significantly different distribution from less luminous objects, presenting mostly M subtypes (centred on M2), and increasing mass-loss rates for later types. In conclusion, the observed properties of CSGs in the SMC and the LMC cannot be described correctly by standard evolutionary models. The very strong correlation between spectral type and bolometric luminosity, supported by all data from the Milky Way, cannot be reproduced at all by current evolutionary tracks.
Rotation is a key parameter in the evolution of massive stars, affecting their evolution, chemical yields, ionizing photon budget, and final fate. We determined the projected rotational velocity, $v_esin i$, of $sim$330 O-type objects, i.e. $sim$210 spectroscopic single stars and $sim$110 primaries in binary systems, in the Tarantula nebula or 30 Doradus (30,Dor) region. The observations were taken using VLT/FLAMES and constitute the largest homogeneous dataset of multi-epoch spectroscopy of O-type stars currently available. The most distinctive feature of the $v_esin i$ distributions of the presumed-single stars and primaries in 30 Dor is a low-velocity peak at around 100,$rm{km s^{-1}}$. Stellar winds are not expected to have spun-down the bulk of the stars significantly since their arrival on the main sequence and therefore the peak in the single star sample is likely to represent the outcome of the formation process. Whereas the spin distribution of presumed-single stars shows a well developed tail of stars rotating more rapidly than 300,$rm{km s^{-1}}$, the sample of primaries does not feature such a high-velocity tail. The tail of the presumed-single star distribution is attributed for the most part -- and could potentially be completely due -- to spun-up binary products that appear as single stars or that have merged. This would be consistent with the lack of such post-interaction products in the binary sample, that is expected to be dominated by pre-interaction systems. The peak in this distribution is broader and is shifted toward somewhat higher spin rates compared to the distribution of presumed-single stars. Systems displaying large radial velocity variations, typical for short period systems, appear mostly responsible for these differences.
Aims: Projected rotational velocities (vsini) have been estimated for 334 targets in the VLT-FLAMES Tarantula survey that do not manifest significant radial velocity variations and are not supergiants. They have spectral types from approximately O9.5 to B3. The estimates have been analysed to infer the underlying rotational velocity distribution, which is critical for understanding the evolution of massive stars. Methods: Projected rotational velocities were deduced from the Fourier transforms of spectral lines, with upper limits also being obtained from profile fitting. For the narrower lined stars, metal and non-diffuse helium lines were adopted, and for the broader lined stars, both non-diffuse and diffuse helium lines; the estimates obtained using the different sets of lines are in good agreement. The uncertainty in the mean estimates is typically 4% for most targets. The iterative deconvolution procedure of Lucy has been used to deduce the probability density distribution of the rotational velocities. Results: Projected rotational velocities range up to approximately 450 kms and show a bi-modal structure. This is also present in the inferred rotational velocity distribution with 25% of the sample having $0leq$ve$leq$100,kms and the high velocity component having ve$sim 250$,kms. There is no evidence from the spatial and radial velocity distributions of the two components that they represent either field and cluster populations or different episodes of star formation. Be-type stars have also been identified. Conclusions: The bi-modal rotational velocity distribution in our sample resembles that found for late-B and early-A type stars. While magnetic braking appears to be a possible mechanism for producing the low-velocity component, we can not rule out alternative explanations.
Aim - In this work, a sample of vsini of B9 to F2-type main sequence single stars has been built from highly homogeneous vsini parameters determined for a large sample cleansed from objects presenting the Am and Ap phenomenon as well as from all known binaries. The aim is to study the distributions of rotational velocities in the mass range of A-type stars for normal single objects. Methods - Robust statistical methods are used to rectify the vsini distributions from the projection effect and the error distribution. The equatorial velocity distributions are obtained for an amount of about 1100 stars divided in six groups defined by the spectral type, under the assumption of randomly orientated rotational axes. Results - We show that late B and early A-type main-sequence stars have genuine bimodal distributions of true equatorial rotational velocities due probably to phenomena of angular momentum loss and redistribution the star underwent before reaching the main sequence. A striking lack of slow rotators is noticed among intermediate and late A-type stars. The bimodal-like shape of their true equatorial rotational velocity distributions could be due to evolutionary effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا