Do you want to publish a course? Click here

Statistical analysis of properties of dwarf novae outbursts

61   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a statistical study of all measurable photometric features of a large sample of dwarf novae during their outbursts and superoutbursts. We used all accessible photometric data for all our objects to make the study as complete and up-to-date as possible. Our aim was to check correlations between these photometric features in order to constrain theoretical models which try to explain the nature of dwarf novae outbursts. We managed to confirm a few of the known correlations, that is the Stolz and Schoembs Relation, the Bailey Relation for long outbursts above the period gap, the relations between the cycle and supercycle lengths, amplitudes of normal and superoutbursts, amplitude and duration of superoutbursts, outburst duration and orbital period, outburst duration and mass ratio for short and normal outbursts, as well as the relation between the rise and decline rates of superoutbursts. However, we question the existence of the Kukarkin-Parenago Relation but we found an analogous relation for superoutbursts. We also failed to find one presumed relation between outburst duration and mass ratio for superoutbursts. This study should help to direct theoretical work dedicated to dwarf novae.



rate research

Read More

The unprecedented sky coverage and observing cadence of the All-Sky Automated Survey for SuperNovae (ASAS-SN) has resulted in the discovery and continued monitoring of a large sample of Galactic transients. The vast majority of these are accretion-powered dwarf nova outbursts in cataclysmic variable systems, but a small subset are thermonuclear-powered classical novae. Despite improved monitoring of the Galaxy for novae from ASAS-SN and other surveys, the observed Galactic nova rate is still lower than predictions. One way classical novae could be missed is if they are confused with the much larger population of dwarf novae. Here, we examine the properties of 1617 dwarf nova outbursts detected by ASAS-SN and compare them to classical novae. We find that the mean classical nova brightens by ~11 magnitudes during outburst, while the mean dwarf nova brightens by only ~5 magnitudes, with the outburst amplitude distributions overlapping by roughly 15%. For the first time, we show that the amplitude of an outburst and the time it takes to decline by two magnitudes from maximum are positively correlated for dwarf nova outbursts. For classical novae, we find that these quantities are negatively correlated, but only weakly, compared to the strong anti-correlation of these quantities found in some previous work. We show that, even if located at large distances, only a small number of putative dwarf novae could be mis-classified classical novae suggesting that there is minimal confusion between these populations. Future spectroscopic follow-up of these candidates can show whether any are indeed classical novae.
183 - Taichi Kato 2013
We studied the Kepler light curves of three SU UMa-type dwarf novae. Both the background dwarf nova of KIC 4378554 and V516 Lyr showed a combination of precursor-main superoutburst, during which superhumps always developed on the fading branch of the precursor. This finding supports the thermal-tidal instability theory as the origin of the superoutburst. A superoutburst of V585 Lyr recorded by Kepler did not show a precursor outburst and the superhumps developed only after the maximum light, a first example in the Kepler data so far. Such a superoutburst is understood within the thermal-tidal instability model. The observation of V585 Lyr made the first clear Kepler detection of the positive period derivative commonly seen in the stage B superhumps in dwarf novae with short orbital periods. In all objects, there was no strong signature of a transition to the dominating stream impact-type component of superhumps, suggesting that there is no strong indication of an enhanced mass-transfer following the superoutburst. We have determined the orbital period of V516 Lyr to be 0.083999(8) d. In V516 Lyr, some of outbursts were double outbursts in a various degree. The preceding outburst in the double outburst was of the inside-out nature while the following one was of the outside-in nature. One of superoutbursts in V516 Lyr was preceded by a double precursor. The preceding precursor failed to trigger a superoutburst and the following precursor triggered a superoutburst by developing positive superhumps.
We obtained the absolute magnitudes, distances, and white dwarf (WD) masses of 32 recent galactic novae based on the time-stretching method for nova light curves. A large part of the light/color curves of two classical novae often overlap each other if we properly squeeze/stretch their timescales. Then, a target nova brightness is related to the other template nova brightness by $(M_V[t])_{rm template} = (M_V[t/f_{rm s}] - 2.5 log f_{rm s})_{rm target}$, where $t$ is the time, $M_V[t]$ is the absolute $V$ magnitude, and $f_{rm s}$ is their timescaling ratio. Moreover, when these two time-stretched light curves, $(t/f_{rm s})$-$(M_V-2.5 log f_{rm s})$, overlap each other, $(t/f_{rm s})$-$(B-V)_0$ do too, where $(B-V)_0$ is the intrinsic $B-V$ color. Thus, the two nova tracks overlap each other in the $(B-V)_0$-$(M_V-2.5 log f_{rm s})$ diagram. Inversely using these properties, we obtain/confirm the distance and reddening by comparing each nova light/color curves with the well calibrated template novae. We classify the 32 novae into two types, LV Vul and V1500 Cyg types, in the time-stretched $(B-V)_0$-$(M_V-2.5 log f_{rm s})$ color-magnitude diagram. The WD mass is obtained by direct comparison of the model $V$ light curves with the observation. Thus, we obtain a uniform set of 32 galactic classical novae that provides the distances and WD masses from a single method. Many novae broadly follow the universal decline law and the present method can be applied to them, while some novae largely deviate from the universal decline law and so the method cannot be directly applied to them. We discuss such examples.
The disc instability model (DIM) has been very successful in explaining the dwarf nova outbursts observed in cataclysmic variables. When, as in intermediate polars (IP), the accreting white dwarf is magnetized, the disc is truncated at the magnetospheric radius, but for mass-transfer rates corresponding to the thermal-viscous instability such systems should still exhibit dwarf-nova outbursts. Yet, the majority of intermediate polars in which the magnetic field is not large enough to completely disrupt the accretion disc, seem to be stable, and the rare observed outbursts, in particular in systems with long orbital periods, are much shorter than normal dwarf-nova outbursts. We investigate the predictions of the disc instability model for intermediate polars in order to determine which of the observed properties of these systems can be explained by the DIM. We use our numerical code for the time evolution of accretion discs, modified to include the effects of the magnetic field, with constant or variable mass transfer from the secondary star. We show that intermediate polars have mass transfer low enough and magnetic fields large enough to keep the accretion disc stable on the cold equilibrium branch. We show that the infrequent and short outbursts observed in long period systems, such as e.g., TV Col, cannot be attributed to the thermal-viscous instability of the accretion disc, but instead have to be triggered by an enhanced mass-transfer from the secondary, or, more likely, by some instability coupling the white dwarf magnetic field with that generated by the magnetorotational instability operating in the accretion disc. Longer outbursts (a few days) could result from the disc instability.
Context. Although the disc instability model is widely accepted as the explanation for dwarf nova outbursts, it is still necessary to confront its predictions to observations because much of the constraints on angular momentum transport in accretion discs are derived from the application of this model to real systems. Aims. We test the predictions of the model concerning the multicolour time evolution of outbursts for two well--observed systems, SS Cyg and VW Hyi. Methods. We calculate the multicolour evolution of dwarf nova outbursts using the disc instability model and taking into account the contribution from the irradiated secondary, the white dwarf and the hot spot. Results. Observations definitely show the existence of a hysteresis in the optical colour-magnitude diagram during the evolution of dwarf nova outbursts. We find that the disc instability model naturally explains the existence and the orientation of this hysteresis. For the specific cases of SS Cyg and VW Hyi, the colour and magnitude ranges covered during the evolution of the system are in reasonable agreement with observations. However, the observed colours are bluer than observed near the peak of the outbursts -- as in steady systems, and the amplitude of the hysteresis cycle is smaller than observed. The predicted colours significantly depend on the assumptions made for calculating the disc spectrum during rise, and on the magnitude of the secondary irradiation for the decaying part of the outburst. Conclusions. Improvements of the spectral disc models are strongly needed if one wishes to address the system evolution in the UV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا