No Arabic abstract
We obtained the absolute magnitudes, distances, and white dwarf (WD) masses of 32 recent galactic novae based on the time-stretching method for nova light curves. A large part of the light/color curves of two classical novae often overlap each other if we properly squeeze/stretch their timescales. Then, a target nova brightness is related to the other template nova brightness by $(M_V[t])_{rm template} = (M_V[t/f_{rm s}] - 2.5 log f_{rm s})_{rm target}$, where $t$ is the time, $M_V[t]$ is the absolute $V$ magnitude, and $f_{rm s}$ is their timescaling ratio. Moreover, when these two time-stretched light curves, $(t/f_{rm s})$-$(M_V-2.5 log f_{rm s})$, overlap each other, $(t/f_{rm s})$-$(B-V)_0$ do too, where $(B-V)_0$ is the intrinsic $B-V$ color. Thus, the two nova tracks overlap each other in the $(B-V)_0$-$(M_V-2.5 log f_{rm s})$ diagram. Inversely using these properties, we obtain/confirm the distance and reddening by comparing each nova light/color curves with the well calibrated template novae. We classify the 32 novae into two types, LV Vul and V1500 Cyg types, in the time-stretched $(B-V)_0$-$(M_V-2.5 log f_{rm s})$ color-magnitude diagram. The WD mass is obtained by direct comparison of the model $V$ light curves with the observation. Thus, we obtain a uniform set of 32 galactic classical novae that provides the distances and WD masses from a single method. Many novae broadly follow the universal decline law and the present method can be applied to them, while some novae largely deviate from the universal decline law and so the method cannot be directly applied to them. We discuss such examples.
V959 Mon is one of the gamma-ray detected novae. It was optically discovered about 50 days after the gamma-ray detection due to proximity to the Sun. The nova speed class is unknown because of lack of the earliest half of optical light curve and short supersoft X-ray phase due to eclipse by the disk rim. Using the universal decline law and time-stretching method, we analyzed the data of V959 Mon and obtained nova parameters. We estimated the distance modulus in the V band to be (m-M)_V=13.15pm0.3 for the reddening of E(B-V)=0.38pm0.01 by directly comparing with the similar type of novae, LV Vul, V1668 Cyg, IV Cep, and V1065 Cen. The distance to V959 Mon is 2.5pm0.5 kpc. If we assume that the early phase light curve of V959 Mon is the same as that of time-stretched light curves of LV Vul, our model light curve fitting suggests that the white dwarf (WD) mass is 0.9-1.15 M_sun, being consistent with a neon nova identification. At the time of gamma-ray detection the photosphere of nova envelope extends to 5-8 R_sun (about two or three times the binary separation) and the wind mass-loss rate is (3-4)times 10^{-5} M_sun yr^{-1}. The period of hard X-ray emission is consistent with the time of appearance of the companion star from the nova envelope. The short supersoft X-ray turnoff time is consistent with the epoch when the WD photosphere shrank to behind the elevating disk rim, that occurs 500 days before nuclear burning turned off.
The ZZ Ceti star KUV 02464+3239 was observed over a whole season at the mountain station of Konkoly Observatory. A rigorous frequency analysis revealed 6 certain periods between 619 and 1250 seconds, with no shorter period modes present. We use the observed periods, published effective temperature and surface gravity, along with the model grid code of Bischoff-Kim, Montgomery and Winget (2008) to perform a seismological analysis. We find acceptable model fits with masses between 0.60 and 0.70 M_Sun. The hydrogen layer mass of the acceptable models are almost always between 10^-4 and 10^-6 M_*. In addition to our seismological results, we also show our analysis of individual light curve segments. Considering the non-sinusoidal shape of the light curve and the Fourier spectra of segments showing large amplitude variations, the importance of non-linear effects in the pulsation is clearly seen.
We have examined the optical/X-ray light curves of seven well-observed recurrent novae, V745 Sco, M31N 2008-12a, LMC N 1968, U Sco, RS Oph, LMC N 2009a, T Pyx, and one recurrent nova candidate LMC N 2012a. Six novae out of the eight show a simple relation that the duration of supersoft X-ray source (SSS) phase is 0.70 times the total duration of the outburst ($=$ X-ray turnoff time), i.e., $t_{rm SSS}=0.70 t_{rm off}$, the total duration of which ranges from 10 days to 260 days. These six recurrent novae show a broad rectangular X-ray light curve shape, first half a period of which is highly variable in the X-ray count rate. The SSS phase corresponds also to an optical plateau phase that indicates a large accretion disk irradiated by a hydrogen-burning WD. The other two recurrent novae, T Pyx and V745 Sco, show a narrow triangular shape of X-ray light curve without an optical plateau phase. Their relations between $t_{rm SSS}$ and $t_{rm off}$ are rather different from the above six recurrent novae. We also present theoretical SSS durations for recurrent novae with various WD masses and stellar metallicities ($Z=$0.004, 0.01, 0.02, and 0.05) and compare with observed durations of these recurrent novae. We show that the SSS duration is a good indicator of the WD mass in the recurrent novae with a broad rectangular X-ray light curve shape.
We analyzed optical, UV, and X-ray light curves of 14 recurrent and very fast novae in our galaxy, Magellanic Clouds, and M31, and obtained their distances and white dwarf (WD) masses. Among the 14 novae, we found that eight novae host very massive ($gtrsim 1.35 M_odot$) WDs and are candidates of Type Ia supernova (SN Ia) progenitors. We confirmed that the same timescaling law and time-stretching method as in galactic novae can be applied to extra-galactic fast novae. We classify the four novae, V745 Sco, T CrB, V838 Her, and V1534 Sco, as the V745 Sco type (rapid-decline), the two novae, RS Oph and V407 Cyg, as the RS Oph type (circumstellar matter(CSM)-shock), and the two novae, U Sco and CI Aql, as the U Sco type (normal-decline). The $V$ light curves of these novae almost overlap with each other in the same group, if we properly stretch in the time direction (timescaling law). We apply our classification method to LMC, SMC, and M31 novae. YY Dor, LMC N 2009a, and SMC N 2016 belong to the normal-decline type, LMC N 2013 to the CSM-shock type, and LMC N 2012a and M31N 2008-12a to the rapid-decline type. We obtained the distance of SMC N 2016 to be $d=20pm2$ kpc, suggesting that SMC N 2016 is a member of our galaxy. The rapid-decline type novae have very massive WDs of $M_{rm WD}=1.37-1.385 M_odot$ and are promising candidates of SN Ia progenitors. This type of novae are much fainter than the MMRD relations.
The classical nova V2491 Cyg was once suggested to be a recurrent nova. We have broadly reproduced the light curve of V2491 Cyg by a nova outburst model on a cold $1.36~M_odot$ white dwarf (WD), which strongly suggests that V2491 Cyg is a classical nova outbursting on a cold very massive WD rather than a recurrent nova outbursting on a warmer WD like the recurrent nova RS Oph. In a long-term evolution of a cataclysmic binary, an accreting WD has been settled down to a thermal equilibrium state with the balance of gravitational energy release and neutrino loss. The central temperature of the WD is uniquely determined by the energy balance. The WD is hot (cold) for a high (low) mass-accretion rate. We present the central temperatures, ignition masses, ignition radii, and recurrence periods for various WD masses and mass-accretion rates. In a classical nova, which corresponds to a low mass-accretion rate, the WD is cool and strongly degenerated and the ignition mass is large, which result in a strong nova outburst. In a recurrent nova, the WD is relatively warmer because of a high mass accretion rate and the outburst is relatively weaker. The gravitational energy release substantially contributes to the luminosity during the recurrent nova outbursts. We compare physical properties between classical novae and recurrent novae and discuss the essential differences between them.