Do you want to publish a course? Click here

Electron doping evolution of the magnetic excitations in NaFe$_{1-x}$Co$_x$As

70   0   0.0 ( 0 )
 Added by Scott Carr
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use time-of-flight (ToF) inelastic neutron scattering (INS) spectroscopy to investigate the doping dependence of magnetic excitations across the phase diagram of NaFe$_{1-x}$Co$_x$As with $x=0, 0.0175, 0.0215, 0.05,$ and $0.11$. The effect of electron-doping by partially substituting Fe by Co is to form resonances that couple with superconductivity, broaden and suppress low energy ($Ele 80$ meV) spin excitations compared with spin waves in undoped NaFeAs. However, high energy ($E> 80$ meV) spin excitations are weakly Co-doping dependent. Integration of the local spin dynamic susceptibility $chi^{primeprime}(omega)$ of NaFe$_{1-x}$Co$_x$As reveals a total fluctuating moment of 3.6 $mu_B^2$/Fe and a small but systematic reduction with electron doping. The presence of a large spin gap in the Co-overdoped nonsuperconducting NaFe$_{0.89}$Co$_{0.11}$As suggests that Fermi surface nesting is responsible for low-energy spin excitations. These results parallel Ni-doping evolution of spin excitations in BaFe$_{2-x}$Ni$_x$As$_2$, confirming the notion that low-energy spin excitations coupling with itinerant electrons are important for superconductivity, while weakly doping dependent high-energy spin excitations result from localized moments.



rate research

Read More

275 - A. F. Wang , X. G. Luo , Y. J. Yan 2012
We measured the resistivity and magnetic susceptibility to map out the phase diagram of single crystalline NaFe$_{1-x}$Co$_x$As. Replacement of Fe by Co suppresses both the structural and magnetic transition, while enhances the superconducting transition temperature ($T_{rm c}$) and superconducting component fraction. Magnetic susceptibility exhibits temperature-linear dependence in the high temperatures up to 500 K for all the superconducting samples, but such behavior suddenly breaks down for the non-superconducting overdoped crystal, suggesting that the superconductivity is closely related to the T-linear dependence of susceptibility. Analysis on the superconducting-state specific heat for the optimally doped crystal provides strong evidence for a two-band s-wave order parameter with gap amplitudes of $Delta_1(0)/k_{rm B}T_{rm c}$= 1.78 and $Delta_2(0)/k_{rm B}T_{rm c}$=3.11, being consistent with the nodeless gap symmetry revealed by angle-resolved photoemission spectroscopy experiment.
We study the normal-state and superconducting properties of NaFe$_{1-x}$Co$_x$As system by specific heat measurements. Both the normal-state Sommerfeld coefficient and superconducting condensation energy are strongly suppressed in the underdoped and heavily overdoped samples. The low-temperature electronic specific heat can be well fitted by either an one-gap or a two-gap BCS-type function for all the superconducting samples. The ratio $gamma_NT_c^2/H_c^2(0)$ can nicely associate the neutron spin resonance as the bosons in the standard Eliashberg model. However, the value of $Delta C/T_cgamma_N$ near optimal doping is larger than the maximum value the model can obtain. Our results suggest that the high-$T_c$ superconductivity in the Fe-based superconductors may be understood within the framework of boson-exchange mechanism but significant modification may be needed to account for the finite-temperature properties.
We report electronic transport measurements on single crystals of NaFe$_{1-x}$Co$_x$As system. We found that the cotangent of Hall angle, cot$theta_{rm H}$, follows $T^4$ for the parent compound with filamentary superconductivity and $T^2$ for the heavily-overdoped non-superconducting sample. While it exhibits approximately $T^3$-dependence in all the superconducting samples, suggesting this behaivor is associated with bulk superconductivity in ferropnictides. A deviation develops below a characteristic temperature $T^*$ well above the structural and superconducting transitions, accompanied by a departure from power-law temperature dependence in resistivity. The doping dependence of $T^*$ resembles the crossover line of pseudogap phase in cuprates.
119 - Y.J. Um , Yunkyu Bang , B.H. Min 2014
We report a study of the lattice dynamics in superconducting NaFeAs (Tc = 8 K) and doped NaFe0.97Co0.03As (Tc = 20 K) using Raman light scattering. Five of the six phonon modes expected from group theory are observed. In contrast with results obtained on iso-structural and iso-electronic LiFeAs, anomalous broadening of Eg(As) and A1g(Na) modes upon cooling is observed in both samples. In addition, in the Co-doped sample, a superconductivity-induced renormalization of the frequency and linewidth of the B1g(Fe) vibration is observed. This renormalization can not be understood within a single band and simple multi-band approaches. A theoretical model that includes the effects of SDW correlations along with sign-changing s-wave pairing state and interband scattering has been developed to explain the observed behavior of the B1g(Fe) mode.
234 - S. Y. Zhou , X. C. Hong , X. Qiu 2012
The thermal conductivity of optimally doped NaFe$_{0.972}$Co$_{0.028}$As ($T_c sim$ 20 K) and overdoped NaFe$_{0.925}$Co$_{0.075}$As ($T_c sim$ 11 K) single crystals were measured down to 50 mK. No residual linear term $kappa_0/T$ is found in zero magnetic field for both compounds, which is an evidence for nodeless superconducting gap. Applying field up to $H$ = 9 T ($approx H_{c2}/4$) does not noticeably increase $kappa_0/T$ in NaFe$_{1.972}$Co$_{0.028}$As, which is consistent with multiple isotropic gaps with similar magnitudes. The $kappa_0/T$ of overdoped NaFe$_{1.925}$Co$_{0.075}$As shows a relatively faster field dependence, indicating the increase of the ratio between the magnitudes of different gaps, or the enhancement of gap anisotropy upon increasing doping.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا