Do you want to publish a course? Click here

Evidence for nodeless superconducting gap in NaFe$_{1-x}$Co$_x$As from low-temperature thermal conductivity measurements

242   0   0.0 ( 0 )
 Added by Shiyan Li
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The thermal conductivity of optimally doped NaFe$_{0.972}$Co$_{0.028}$As ($T_c sim$ 20 K) and overdoped NaFe$_{0.925}$Co$_{0.075}$As ($T_c sim$ 11 K) single crystals were measured down to 50 mK. No residual linear term $kappa_0/T$ is found in zero magnetic field for both compounds, which is an evidence for nodeless superconducting gap. Applying field up to $H$ = 9 T ($approx H_{c2}/4$) does not noticeably increase $kappa_0/T$ in NaFe$_{1.972}$Co$_{0.028}$As, which is consistent with multiple isotropic gaps with similar magnitudes. The $kappa_0/T$ of overdoped NaFe$_{1.925}$Co$_{0.075}$As shows a relatively faster field dependence, indicating the increase of the ratio between the magnitudes of different gaps, or the enhancement of gap anisotropy upon increasing doping.



rate research

Read More

281 - A. F. Wang , X. G. Luo , Y. J. Yan 2012
We measured the resistivity and magnetic susceptibility to map out the phase diagram of single crystalline NaFe$_{1-x}$Co$_x$As. Replacement of Fe by Co suppresses both the structural and magnetic transition, while enhances the superconducting transition temperature ($T_{rm c}$) and superconducting component fraction. Magnetic susceptibility exhibits temperature-linear dependence in the high temperatures up to 500 K for all the superconducting samples, but such behavior suddenly breaks down for the non-superconducting overdoped crystal, suggesting that the superconductivity is closely related to the T-linear dependence of susceptibility. Analysis on the superconducting-state specific heat for the optimally doped crystal provides strong evidence for a two-band s-wave order parameter with gap amplitudes of $Delta_1(0)/k_{rm B}T_{rm c}$= 1.78 and $Delta_2(0)/k_{rm B}T_{rm c}$=3.11, being consistent with the nodeless gap symmetry revealed by angle-resolved photoemission spectroscopy experiment.
The in-plane thermal conductivity $kappa$ of overdoped FeAs-based superconductor BaFe$_{1.73}$Co$_{0.27}$As$_2$ ($T_c$ = 8.1 K) single crystal was measured down to 80 mK. In zero field, the residual linear term $kappa_0/T$ is negligible, suggesting a nodeless superconducting gap in the $ab$-plane. In magnetic field, $kappa_0/T$ increases rapidly, very different from that of conventional s-wave superconductors. This anomalous $kappa_0/T(H)$ may reveal an exotic superconducting gap structure in overdoped BaFe$_{1.73}$Co$_{0.27}$As$_2$: the vanishing hole ($beta$) pocket has a much larger gap than the electron ($gamma$ and $delta$) pockets which contain most of the carriers. Such an exotic gap structure is an evidence for superconducting state induced by interband interactions, in which the band with the {it smaller} density of states has a {it larger} gap.
We use inelastic neutron scattering to study the fate of the two spin resonance modes in underdoped superconducting NaFe$_{1-x}$Co$_x$As ($x=0.0175$) under applied magnetic fields. While an applied in-plane magnetic field of $B=12$ T only modestly suppresses superconductivity and enhances static antiferromagnetic order, the two spin resonance modes display disparate responses. The spin resonance mode at higher energy is mildly suppressed, consistent with the field effect in other unconventional superconductors. The spin resonance mode at lower energy, on the other hand, is almost completely suppressed. Such dramatically different responses to applied magnetic field indicate distinct origins of the two spin resonance modes, resulting from the strongly orbital-selective nature of spin excitations and Cooper-pairing in iron-based superconductors.
128 - Y.J. Um , Yunkyu Bang , B.H. Min 2014
We report a study of the lattice dynamics in superconducting NaFeAs (Tc = 8 K) and doped NaFe0.97Co0.03As (Tc = 20 K) using Raman light scattering. Five of the six phonon modes expected from group theory are observed. In contrast with results obtained on iso-structural and iso-electronic LiFeAs, anomalous broadening of Eg(As) and A1g(Na) modes upon cooling is observed in both samples. In addition, in the Co-doped sample, a superconductivity-induced renormalization of the frequency and linewidth of the B1g(Fe) vibration is observed. This renormalization can not be understood within a single band and simple multi-band approaches. A theoretical model that includes the effects of SDW correlations along with sign-changing s-wave pairing state and interband scattering has been developed to explain the observed behavior of the B1g(Fe) mode.
We have performed high resolution angle-resolved photoemission measurements on superconducting electron-doped NaFe$_{0.95}$Co$_{0.05}$As ($T_{c}sim$18 K). We observed a hole-like Fermi surface around the zone center and two electron-like Fermi surfaces around the M point which can be connected by the $Q=(pi, pi)$ wavevector, suggesting that scattering over the near-nested Fermi surfaces is important to the superconductivity of this 111 pnicitide. Nearly isotropic superconducting gaps with sharp coherent peaks are observed below $T_c$ on all three Fermi surfaces. Upon increasing temperature through $T_c$, the gap size shows little change while the coherence vanishes. Large ratios of $2Delta/k_{B}T_{c}sim8$ are observed for all the bands, indicating a strong coupling in this system. These results are not expected from a classical phonon-mediated pairing mechanism.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا