Do you want to publish a course? Click here

Entanglement entropies and fermion signs of critical metals

92   0   0.0 ( 0 )
 Added by Frank Kruger
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The fermion sign problem is often viewed as a sheer inconvenience that plagues numerical studies of strongly interacting electron systems. Only recently, it has been suggested that fermion signs are fundamental for the universal behavior of critical metallic systems and crucially enhance their degree of quantum entanglement. In this work we explore potential connections between emergent scale invariance of fermion sign structures and scaling properties of bipartite entanglement entropies. Our analysis is based on a wavefunction ansatz that incorporates collective, long-range backflow correlations into fermionic Slater determinants. Such wavefunctions mimic the collapse of a Fermi liquid at a quantum critical point. Their nodal surfaces -- a representation of the fermion sign structure in many-particle configurations space -- show fractal behavior up to a length scale $xi$ that diverges at a critical backflow strength. We show that the Hausdorff dimension of the fractal nodal surface depends on $xi$, the number of fermions and the exponent of the backflow. For the same wavefunctions we numerically calculate the second Renyi entanglement entropy $S_2$. Our results show a cross-over from volume scaling, $S_2sim ell^theta$ ($theta=2$ in $d=2$ dimensions), to the characteristic Fermi-liquid behavior $S_2sim ellln ell$ on scales larger than $xi$. We find that volume scaling of the entanglement entropy is a robust feature of critical backflow fermions, independent of the backflow exponent and hence the fractal dimension of the scale invariant sign structure.



rate research

Read More

We study the problem of disorder-free metals near a continuous Ising nematic quantum critical point in $d=3+1$ dimensions. We begin with perturbation theory in the `Yukawa coupling between the electrons and undamped bosons (nematic order parameter fluctuations) and show that the perturbation expansion breaks down below energy scales where the bosons get substantially Landau damped. Above this scale however, we find a regime in which low-energy fermions obtain an imaginary self-energy that varies linearly with frequency, realizing the `marginal Fermi liquid phenomenologycite{Varma}. We discuss a large N theory in which the marginal Fermi liquid behavior is enhanced while the role of Landau damping is suppressed, and show that quasiparticles obtain a decay rate parametrically larger than their energy.
In multi-band metals quasi-particles arising from different atomic orbitals coexist at a common Fermi surface. Superconductivity in these materials may appear due to interactions within a band (intra-band) or among the distinct metallic bands (inter-band). Here we consider the suppression of superconductivity in the intra-band case due to hybridization. The fluctuations at the superconducting quantum critical point (SQCP) are obtained calculating the response of the system to a fictitious space and time dependent field, which couples to the superconducting order parameter. The appearance of superconductivity is related to the divergence of a generalized susceptibility. For a single band superconductor this coincides with the textit{Thouless criterion}. For fixed chemical potential and large hybridization, the superconducting state has many features in common with breached pair superconductivity with unpaired electrons at the Fermi surface. The T=0 phase transition from the superconductor to the normal state is in the universality class of the density-driven Bose-Einstein condensation. For fixed number of particles and in the strong coupling limit, the system still has an instability to the normal sate with increasing hybridization.
64 - T. Senthil 2006
Heavy electron metals on the verge of a quantum phase transition to magnetism show a number of unusual non-fermi liquid properties which are poorly understood. This article discusses in a general way various theoretical aspects of this phase transition with an eye toward understanding the non-fermi liquid phenomena. We suggest that the non-Fermi liquid quantum critical state may have a sharp Fermi surface with power law quasiparticles but with a volume not set by the usual Luttinger rule. We also discuss the possibility that the electronic structure change associated with the possible Fermi surface reconstruction may diverge at a different time/length scale from that associated with magnetic phenomena.
Quantum criticality in certain heavy-fermion metals is believed to go beyond the Landau framework of order-parameter fluctuations. In particular, there is considerable evidence for Kondo destruction: a disappearance of the static Kondo singlet amplitude that results in a sudden reconstruction of Fermi surface across the quantum critical point and an extra critical energy scale. This effect can be analyzed in terms of a dynamical interplay between the Kondo and RKKY interactions. In the Kondo-destroyed phase, a well-defined Kondo resonance is lost, but Kondo singlet correlations remain at nonzero frequencies. This dynamical effect allows for mass enhancement in the Kondo-destroyed phase. Here, we elucidate the dynamical Kondo effect in Bose-Fermi Kondo/Anderson models, which unambiguously exhibit Kondo-destruction quantum critical points. We show that a simple physical quantity---the expectation value $langle {bf S}_{f} cdot {bf s}_{c} rangle$ for the dot product of the local ($f$) and conduction-electron ($c$) spins---varies continuously across such quantum critical points. A nonzero $langle {bf S}_{f} cdot {bf s}_{c} rangle$ manifests the dynamical Kondo effect that operates in the Kondo-destroyed phase. Implications are discussed for the stability of Kondo-destruction quantum criticality as well as the understanding of experimental results in quantum critical heavy-fermion metals.
We analyze general properties of the perturbation expansion for two-dimensional quantum critical metals with singular forward scattering, such as metals at an Ising nematic quantum critical point and metals coupled to a U(1) gauge field. We derive asymptotic properties of fermion loops appearing as subdiagrams of the contributing Feynman diagrams -- for large and small momenta. Substantial cancellations are found in important scaling limits, which reduce the degree of divergence of Feynman diagrams with boson legs. Implementing these cancellations we obtain improved power-counting estimates that yield the true degree of divergence. In particular, we find that perturbative contributions to the boson self-energy are generally ultraviolet convergent for a dynamical critical exponent $z<3$, and divergent beyond three-loop order for $z geq 3$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا