Do you want to publish a course? Click here

Fermion loops and improved power-counting in two-dimensional critical metals with singular forward scattering

61   0   0.0 ( 0 )
 Added by Tobias Holder
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze general properties of the perturbation expansion for two-dimensional quantum critical metals with singular forward scattering, such as metals at an Ising nematic quantum critical point and metals coupled to a U(1) gauge field. We derive asymptotic properties of fermion loops appearing as subdiagrams of the contributing Feynman diagrams -- for large and small momenta. Substantial cancellations are found in important scaling limits, which reduce the degree of divergence of Feynman diagrams with boson legs. Implementing these cancellations we obtain improved power-counting estimates that yield the true degree of divergence. In particular, we find that perturbative contributions to the boson self-energy are generally ultraviolet convergent for a dynamical critical exponent $z<3$, and divergent beyond three-loop order for $z geq 3$.



rate research

Read More

230 - J. Bauer , P. Jakubczyk , 2011
We compute the transition temperature $T_c$ and the Ginzburg temperature $T_{rm G}$ above $T_c$ near a quantum critical point at the boundary of an ordered phase with a broken discrete symmetry in a two-dimensional metallic electron system. Our calculation is based on a renormalization group analysis of the Hertz action with a scalar order parameter. We provide analytic expressions for $T_c$ and $T_{rm G}$ as a function of the non-thermal control parameter for the quantum phase transition, including logarithmic corrections. The Ginzburg regime between $T_c$ and $T_{rm G}$ occupies a sizable part of the phase diagram.
91 - N. Kaplis , F. Kruger , 2016
The fermion sign problem is often viewed as a sheer inconvenience that plagues numerical studies of strongly interacting electron systems. Only recently, it has been suggested that fermion signs are fundamental for the universal behavior of critical metallic systems and crucially enhance their degree of quantum entanglement. In this work we explore potential connections between emergent scale invariance of fermion sign structures and scaling properties of bipartite entanglement entropies. Our analysis is based on a wavefunction ansatz that incorporates collective, long-range backflow correlations into fermionic Slater determinants. Such wavefunctions mimic the collapse of a Fermi liquid at a quantum critical point. Their nodal surfaces -- a representation of the fermion sign structure in many-particle configurations space -- show fractal behavior up to a length scale $xi$ that diverges at a critical backflow strength. We show that the Hausdorff dimension of the fractal nodal surface depends on $xi$, the number of fermions and the exponent of the backflow. For the same wavefunctions we numerically calculate the second Renyi entanglement entropy $S_2$. Our results show a cross-over from volume scaling, $S_2sim ell^theta$ ($theta=2$ in $d=2$ dimensions), to the characteristic Fermi-liquid behavior $S_2sim ellln ell$ on scales larger than $xi$. We find that volume scaling of the entanglement entropy is a robust feature of critical backflow fermions, independent of the backflow exponent and hence the fractal dimension of the scale invariant sign structure.
64 - T. Senthil 2006
Heavy electron metals on the verge of a quantum phase transition to magnetism show a number of unusual non-fermi liquid properties which are poorly understood. This article discusses in a general way various theoretical aspects of this phase transition with an eye toward understanding the non-fermi liquid phenomena. We suggest that the non-Fermi liquid quantum critical state may have a sharp Fermi surface with power law quasiparticles but with a volume not set by the usual Luttinger rule. We also discuss the possibility that the electronic structure change associated with the possible Fermi surface reconstruction may diverge at a different time/length scale from that associated with magnetic phenomena.
To assess the strength of nematic fluctuations with a finite wave vector in a two-dimensional metal, we compute the static d-wave polarization function for tight-binding electrons on a square lattice. At Van Hove filling and zero temperature the function diverges logarithmically at q=0. Away from Van Hove filling the ground state polarization function exhibits finite peaks at finite wave vectors. A nematic instability driven by a sufficiently strong attraction in the d-wave charge channel thus leads naturally to a spatially modulated nematic state, with a modulation vector that increases in length with the distance from Van Hove filling. Above Van Hove filling, for a Fermi surface crossing the magnetic Brillouin zone boundary, the modulation vector connects antiferromagnetic hot spots with collinear Fermi velocities.
Quantum criticality in certain heavy-fermion metals is believed to go beyond the Landau framework of order-parameter fluctuations. In particular, there is considerable evidence for Kondo destruction: a disappearance of the static Kondo singlet amplitude that results in a sudden reconstruction of Fermi surface across the quantum critical point and an extra critical energy scale. This effect can be analyzed in terms of a dynamical interplay between the Kondo and RKKY interactions. In the Kondo-destroyed phase, a well-defined Kondo resonance is lost, but Kondo singlet correlations remain at nonzero frequencies. This dynamical effect allows for mass enhancement in the Kondo-destroyed phase. Here, we elucidate the dynamical Kondo effect in Bose-Fermi Kondo/Anderson models, which unambiguously exhibit Kondo-destruction quantum critical points. We show that a simple physical quantity---the expectation value $langle {bf S}_{f} cdot {bf s}_{c} rangle$ for the dot product of the local ($f$) and conduction-electron ($c$) spins---varies continuously across such quantum critical points. A nonzero $langle {bf S}_{f} cdot {bf s}_{c} rangle$ manifests the dynamical Kondo effect that operates in the Kondo-destroyed phase. Implications are discussed for the stability of Kondo-destruction quantum criticality as well as the understanding of experimental results in quantum critical heavy-fermion metals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا