No Arabic abstract
Unique superconductivity at surfaces/interfaces, as exemplified by LaAlO3/SrTiO3 interfaces, and the high transition temperature in ultrathin FeSe films, have triggered intense debates on how superconductivity is affected in atomic and electronic reconstructions. The surface of superconducting cubic spinel oxide LiTi2O4 is another interesting system because its inherent surface electronic and atomic reconstructions add complexity to superconducting properties. Investigations of such surfaces are hampered by the lack of single crystals or high-quality thin films. Here, using low-temperature scanning tunneling microscopy, we report an unexpected small superconducting energy gap and a long coherence length on the surface of LiTi2O4 (111) epitaxial thin films. Furthermore, we find that a pseudogap opening at the Fermi energy modifies the surface superconductivity. Our results open an avenue, exploring anomalous superconductivity on the surface of cubic transition-metal oxides where the electronic states are spontaneously modulated with involving rich many-body interactions.
Using scanning tunneling spectroscopy we examined the local density of states of thin c-axis La2-xSrxCuO4 films, over wide doping and temperature ranges. We found that the pseudogap exists only at doping levels lower than optimal. For x = 0.12, close to the anomalous x = 1/8 doping level, a zero bias conductance peak was the dominant spectral feature, instead of the excepted V- shaped (c-axis tunneling) gap structure. We have established that this surprising effect cannot be explained by tunneling into (110) facets. Possible origins for this unique behavior are discussed.
We present Scanning Tunneling Spectroscopy measurements at 0.1 K using tips made of Al. At zero field, the atomic lattice and charge density wave of 2HNbSe2 are observed, and under magnetic fields the peculiar electronic surface properties of vortices are precisely resolved. The tip density of states is influenced by the local magnetic field of the vortex, providing for a new probe of the magnetic field at nanometric sizes.
We report on spatial measurements of the superconducting proximity effect in epitaxial graphene induced by a graphene-superconductor interface. Superconducting aluminum films were grown on epitaxial multilayer graphene on SiC. The aluminum films were discontinuous with networks of trenches in the film morphology reaching down to exposed graphene terraces. Scanning tunneling spectra measured on the graphene terraces show a clear decay of the superconducting energy gap with increasing separation from the graphene-aluminum edges. The spectra were well described by Bardeen-Cooper-Schrieffer (BCS) theory. The decay length for the superconducting energy gap in graphene was determined to be greater than 400 nm. Deviations in the exponentially decaying energy gap were also observed on a much smaller length scale of tens of nanometers.
The combination of electronic correlations and Fermi surfaces with multiple nesting vectors can lead to the appearance of complex multi-Q magnetic ground states, hosting unusual states such as chiral density-waves and quantum Hall insulators. Distinguishing single-Q and multi-Q magnetic phases is however a notoriously difficult experimental problem. Here we propose theoretically that the local density of states near a magnetic impurity, whose orientation may be controlled by an external magnetic field, can be used to map out the detailed magnetic configuration of an itinerant system and distinguish unambiguously between single-Q and multi-Q phases. We demonstrate this concept by computing and contrasting the LDOS near a magnetic impurity embedded in three different magnetic ground states relevant to iron-based superconductors -- one single-Q and two double-Q phases. Our results open a promising avenue to investigate complex magnetic configurations in itinerant systems via standard scanning tunneling spectroscopy, without requiring spin-resolved capability.
Scanning tunneling spectroscopy was performed on (110)-oriented thin films of Ca-overdoped Y$_{0.95}$Ca$_{0.05}$Ba$_2$Cu$_3$O$_{7-delta}$ at 4.2K, to probe the local evolution of Andreev$-$Saint-James surface states in a c-axis magnetic field. In zero field, we observed conductance spectra with spontaneously-split peaks and spectra with unsplit zero-bias peaks. The former showed enhanced splitting with field, and the latter showed threshold splitting above finite fields. Although both field evolutions can be described in terms of screening and orbital supercurrents, within the framework of $dpm ialpha$ pairing ($d$=$d_{x^2-y^2}$; $alpha$=$d_{xy}$,$s$), the enhanced splitting is consistent with only the $d$ + $ialpha$ state. Our results have direct implications on the stability of broken time-reversal symmetry in cuprate superconductors.