No Arabic abstract
Using scanning tunneling spectroscopy we examined the local density of states of thin c-axis La2-xSrxCuO4 films, over wide doping and temperature ranges. We found that the pseudogap exists only at doping levels lower than optimal. For x = 0.12, close to the anomalous x = 1/8 doping level, a zero bias conductance peak was the dominant spectral feature, instead of the excepted V- shaped (c-axis tunneling) gap structure. We have established that this surprising effect cannot be explained by tunneling into (110) facets. Possible origins for this unique behavior are discussed.
We use inelastic neutron scattering to measure the magnetic excitations in the underdoped superconductor La2-xSrxCuO4 (x=0.085, Tc=22 K) over energy and temperatures ranges 5 < E < 200 meV and 5 < T < 300 K respectively. At high temperature (T = 300 K), we observe strongly damped excitations with a characteristic energy scale of approximately 50 meV. As the temperature is lowered to T = 30 K, and we move into the pseudogap state, the magnetic excitations become highly structured in energy and momentum below about 60 meV. This change appears to be associated with the development of the pseudogap in the electronic excitations.
Unique superconductivity at surfaces/interfaces, as exemplified by LaAlO3/SrTiO3 interfaces, and the high transition temperature in ultrathin FeSe films, have triggered intense debates on how superconductivity is affected in atomic and electronic reconstructions. The surface of superconducting cubic spinel oxide LiTi2O4 is another interesting system because its inherent surface electronic and atomic reconstructions add complexity to superconducting properties. Investigations of such surfaces are hampered by the lack of single crystals or high-quality thin films. Here, using low-temperature scanning tunneling microscopy, we report an unexpected small superconducting energy gap and a long coherence length on the surface of LiTi2O4 (111) epitaxial thin films. Furthermore, we find that a pseudogap opening at the Fermi energy modifies the surface superconductivity. Our results open an avenue, exploring anomalous superconductivity on the surface of cubic transition-metal oxides where the electronic states are spontaneously modulated with involving rich many-body interactions.
The individual kparallel and kperp stripe excitations in fluctuating spin-charge stripes have not been observed yet. In Raman scattering if we set, for example, incident and scattered light polarizations to two possible stripe directions, we can observe the fluctuating stripe as if it is static. Using the different symmetry selection rule between the B1g two-magnon scattering and the B1g and B2g isotropic electronic scattering, we succeeded to obtain the kparallel and kperp strip magnetic excitations separately in La2-xSrxCuO4. Only the kperp stripe excitations appear in the wide-energy isotropic electronic Raman scattering, indicating that the charge transfer is restricted to the direction perpendicular to the stripe. This is the same as the Burgers vector of an edge dislocation which easily slides perpendicularly to the stripe. Hence charges at the edge dislocation move together with the dislocation perpendicularly to the stripe, while other charges are localized. A looped edge dislocation has lower energy than a single edge dislocation. The superconducting coherence length is close to the inter-charge stripe distance at x le 0.2. Therefore we conclude that Cooper pairs are formed at looped edge dislocations. The restricted charge transfer direction naturally explains the opening of a pseudogap around (0, {pi}) for the stripe parallel to the b axis and the reconstruction of the Fermi surface to have a flat plane near (0, {pi}). They break the four-fold rotational symmetry. Furthermore the systematic experiments revealed the carrier density dependence of the isotropic and anisotropic electronic excitations, the spin density wave and/or charge density wave gap near ({pi}/2, {pi}/2), and the strong coupling between the electronic states near ({pi}/2, {pi}/2) and the zone boundary phonons at ({pi}, {pi}).
We present a volume-sensitive high-energy x-ray diffraction study of the underdoped cuprate high temperature superconductor La2-xSrxCuO4 (x = 0.12, Tc=27 K) in applied magnetic field. Bulk short-range charge stripe order with propagation vector q_ch = (0.231, 0, 0.5) is demonstrated to exist below T_ch = 85(10) K and shown to compete with superconductivity. We argue that bulk charge ordering arises from fluctuating stripes that become pinned near boundaries between orthorhombic twin domains.
We investigated the doping dependence of magnetic excitations in the lightly doped cuprate La2-xSrxCuO4 via combined studies of resonant inelastic x-ray scattering (RIXS) at the Cu L3-edge and theoretical calculations. With increasing doping, the magnon dispersion is found to be essentially unchanged, but the spectral width broadens and the spectral weight varies differently at different momenta. Near the Brillouin zone center, we directly observe bimagnon excitations which possess the same energy scale and doping dependence as previously observed by Raman spectroscopy. They disperse weakly in energy-momentum space, and are consistent with a bimagnon dispersion that is renormalized by the magnon-magnon interaction at the zone center.