Do you want to publish a course? Click here

Synchronous Hybrid Message-Adversary

261   0   0.0 ( 0 )
 Added by Danny Dolev
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

The theory of distributed computing, lagging in its development behind practice, has been biased in its modelling by employing mechanisms within the model mimicking reality. Reality means, processors can fail. But theory is about predicting consequences of reality, hence if we capture reality by artificial models, but those nevertheless make analysis simpler, we should pursue the artificial models. Recently the idea was advocated to analyze distributed systems and view processors as infallible. It is the message delivery substrate that causes problems. This view not only can effectively emulate reality, but above all seems to allow to view any past models as emph{synchronous} models. Synchronous models are easier to analyze than asynchronous ones. Furthermore, it gives rise to models we havent contemplated in the past. One such model, presented here, is the Hybrid Message-Adversary. We motivate this model through the need to analyze Byzantine faults. The Hybrid model exhibits a phenomenon not seen in the past.



rate research

Read More

Distributed training of deep learning models on large-scale training data is typically conducted with asynchronous stochastic optimization to maximize the rate of updates, at the cost of additional noise introduced from asynchrony. In contrast, the synchronous approach is often thought to be impractical due to idle time wasted on waiting for straggling workers. We revisit these conventional beliefs in this paper, and examine the weaknesses of both approaches. We demonstrate that a third approach, synchronous optimization with backup workers, can avoid asynchronous noise while mitigating for the worst stragglers. Our approach is empirically validated and shown to converge faster and to better test accuracies.
We present new protocols for Byzantine state machine replication and Byzantine agreement in the synchronous and authenticated setting. The celebrated PBFT state machine replication protocol tolerates $f$ Byzantine faults in an asynchronous setting using $3f+1$ replicas, and has since been studied or deployed by numerous works. In this work, we improve the Byzantine fault tolerance threshold to $n=2f+1$ by utilizing a relaxed synchrony assumption. We present a synchronous state machine replication protocol that commits a decision every 3 rounds in the common case. The key challenge is to ensure quorum intersection at one honest replica. Our solution is to rely on the synchrony assumption to form a post-commit quorum of size $2f+1$, which intersects at $f+1$ replicas with any pre-commit quorums of size $f+1$. Our protocol also solves synchronous authenticated Byzantine agreement in expected 8 rounds. The best previous solution (Katz and Koo, 2006) requires expected 24 rounds. Our protocols may be applied to build Byzantine fault tolerant systems or improve cryptographic protocols such as cryptocurrencies when synchrony can be assumed.
Consider an arbitrary network of communicating modules on a chip, each requiring a local signal telling it when to execute a computational step. There are three common solutions to generating such a local clock signal: (i) by deriving it from a single, central clock source, (ii) by local, free-running oscillators, or (iii) by handshaking between neighboring modules. Conceptually, each of these solutions is the result of a perceived dichotomy in which (sub)systems are either clocked or fully asynchronous, suggesting that the designers choice is limited to deciding where to draw the line between synchronous and asynchronous design. In contrast, we take the view that the better question to ask is how synchronous the system can and should be. Based on a distributed clock synchronization algorithm, we present a novel design providing modules with local clocks whose frequency bounds are almost as good as those of corresponding free-running oscillators, yet neighboring modules are guaranteed to have a phase offset substantially smaller than one clock cycle. Concretely, parameters obtained from a 15nm ASIC implementation running at 2GHz yield mathematical worst-case bounds of 30ps on phase offset for a 32x32 node grid network.
In this paper we will present the Multidimensional Byzantine Agreement (MBA) Protocol, a leaderless Byzantine agreement protocol defined for complete and synchronous networks that allows a network of nodes to reach consensus on a vector of relevant information regarding a set of observed events. The consensus process is carried out in parallel on each component, and the output is a vector whose components are either values with wide agreement in the network (even if no individual node agrees on every value) or a special value $bot$ that signals irreconcilable disagreement. The MBA Protocol is probabilistic and its execution halts with probability 1, and the number of steps necessary to halt follows a Bernoulli-like distribution. The design combines a Multidimensional Graded Consensus and a Multidimensional Binary Byzantine Agreement, the generalization to the multidimensional case of two protocols by Micali and Feldman. We prove the correctness and security of the protocol assuming a synchronous network where less than a third of the nodes are malicious.
We design and implement a distributed multinode synchronous SGD algorithm, without altering hyper parameters, or compressing data, or altering algorithmic behavior. We perform a detailed analysis of scaling, and identify optimal design points for different networks. We demonstrate scaling of CNNs on 100s of nodes, and present what we believe to be record training throughputs. A 512 minibatch VGG-A CNN training run is scaled 90X on 128 nodes. Also 256 minibatch VGG-A and OverFeat-FAST networks are scaled 53X and 42X respectively on a 64 node cluster. We also demonstrate the generality of our approach via best-in-class 6.5X scaling for a 7-layer DNN on 16 nodes. Thereafter we attempt to democratize deep-learning by training on an Ethernet based AWS cluster and show ~14X scaling on 16 nodes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا