Do you want to publish a course? Click here

Efficient Synchronous Byzantine Consensus

68   0   0.0 ( 0 )
 Added by Ling Ren
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We present new protocols for Byzantine state machine replication and Byzantine agreement in the synchronous and authenticated setting. The celebrated PBFT state machine replication protocol tolerates $f$ Byzantine faults in an asynchronous setting using $3f+1$ replicas, and has since been studied or deployed by numerous works. In this work, we improve the Byzantine fault tolerance threshold to $n=2f+1$ by utilizing a relaxed synchrony assumption. We present a synchronous state machine replication protocol that commits a decision every 3 rounds in the common case. The key challenge is to ensure quorum intersection at one honest replica. Our solution is to rely on the synchrony assumption to form a post-commit quorum of size $2f+1$, which intersects at $f+1$ replicas with any pre-commit quorums of size $f+1$. Our protocol also solves synchronous authenticated Byzantine agreement in expected 8 rounds. The best previous solution (Katz and Koo, 2006) requires expected 24 rounds. Our protocols may be applied to build Byzantine fault tolerant systems or improve cryptographic protocols such as cryptocurrencies when synchrony can be assumed.



rate research

Read More

In this paper we will present the Multidimensional Byzantine Agreement (MBA) Protocol, a leaderless Byzantine agreement protocol defined for complete and synchronous networks that allows a network of nodes to reach consensus on a vector of relevant information regarding a set of observed events. The consensus process is carried out in parallel on each component, and the output is a vector whose components are either values with wide agreement in the network (even if no individual node agrees on every value) or a special value $bot$ that signals irreconcilable disagreement. The MBA Protocol is probabilistic and its execution halts with probability 1, and the number of steps necessary to halt follows a Bernoulli-like distribution. The design combines a Multidimensional Graded Consensus and a Multidimensional Binary Byzantine Agreement, the generalization to the multidimensional case of two protocols by Micali and Feldman. We prove the correctness and security of the protocol assuming a synchronous network where less than a third of the nodes are malicious.
Byzantine fault-tolerant (BFT) state machine replication (SMR) has been studied for over 30 years. Recently it has received more attention due to its application in permissioned blockchain systems. A sequence of research efforts focuses on improving the commit latency of the SMR protocol in the common good case, including PBFT with $3$-round latency and $ngeq 3f+1$ and FaB with $2$-round latency and $ngeq 5f+1$. In this paper, we propose an authenticated protocol that solves $2$-round BFT SMR with only $ngeq 5f-1$ replicas, which refutes the optimal resiliency claim made in FaB for needing $n geq 5f+1$ for $2$-round PBFT-style BFT protocols. For the special case when $f=1$, our protocol needs only $4$ replicas, and strictly improves PBFT by reducing the latency by one round (even when one backup is faulty).
Partially synchronous Byzantine consensus protocols typically structure their execution into a sequence of views, each with a designated leader process. The key to guaranteeing liveness in these protocols is to ensure that all correct processes eventually overlap in a view with a correct leader for long enough to reach a decision. We propose a simple view synchronizer abstraction that encapsulates the corresponding functionality for Byzantine consensus protocols, thus simplifying their design. We present a formal specification of a view synchronizer and its implementation under partial synchrony, which runs in bounded space despite tolerating message loss during asynchronous periods. We show that our synchronizer specification is strong enough to guarantee liveness for single-sh
This paper presents a novel leaderless protocol (FPC-BI: Fast Probabilistic Consensus within Byzantine Infrastructures) with a low communicational complexity and which allows a set of nodes to come to a consensus on a value of a single bit. The paper makes the assumption that part of the nodes are Byzantine, and are thus controlled by an adversary who intends to either delay the consensus, or break it (this defines that at least a couple of honest nodes come to different conclusions). We prove that, nevertheless, the protocol works with high probability when its parameters are suitably chosen. Along this the paper also provides explicit estimates on the probability that the protocol finalizes in the consensus state in a given time. This protocol could be applied to reaching consensus in decentralized cryptocurrency systems. A special feature of it is that it makes use of a sequence of random numbers which are either provided by a trusted source or generated by the nodes themselves using some decentralized random number generating protocol. This increases the overall trustworthiness of the infrastructure. A core contribution of the paper is that it uses a very weak consensus to obtain a strong consensus on the value of a bit, and which can relate to the validity of a transaction.
In the Lattice Agreement (LA) problem, originally proposed by Attiya et al. cite{Attiya:1995}, a set of processes has to decide on a chain of a lattice. More precisely, each correct process proposes an element $e$ of a certain join-semi lattice $L$ and it has to decide on a value that contains $e$. Moreover, any pair $p_i,p_j$ of correct processes has to decide two values $dec_i$ and $dec_j$ that are comparable (e.g., $dec_i leq dec_j$ or $dec_j < dec_i$). LA has been studied for its practical applications, as example it can be used to implement a snapshot objects cite{Attiya:1995} or a replicated state machine with commutative operations cite{Faleiro:2012}. Interestingly, the study of the Byzantine Lattice Agreement started only recently, and it has been mainly devoted to asynchronous systems. The synchronous case has been object of a recent pre-print cite{Zheng:aa} where Zheng et al. propose an algorithm terminating in ${cal O}(sqrt f)$ rounds and tolerating $f < lceil n/3 rceil$ Byzantine processes. In this paper we present new contributions for the synchronous case. We investigate the problem in the usual message passing model for a system of $n$ processes with distinct unique IDs. We first prove that, when only authenticated channels are available, the problem cannot be solved if $f=n/3$ or more processes are Byzantine. We then propose a novel algorithm that works in a synchronous system model with signatures (i.e., the {em authenticated message} model), tolerates up to $f$ byzantine failures (where $f<n/3$) and that terminates in ${cal O}(log f)$ rounds. We discuss how to remove authenticated messages at the price of algorithm resiliency ($f < n/4$). Finally, we present a transformer that converts any synchronous LA algorithm to an algorithm for synchronous Generalised Lattice Agreement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا