Do you want to publish a course? Click here

A bound for the eigenvalue counting function for Krein--von Neumann and Friedrichs extensions

131   0   0.0 ( 0 )
 Added by Fritz Gesztesy
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

For an arbitrary open, nonempty, bounded set $Omega subset mathbb{R}^n$, $n in mathbb{N}$, and sufficiently smooth coefficients $a,b,q$, we consider the closed, strictly positive, higher-order differential operator $A_{Omega, 2m} (a,b,q)$ in $L^2(Omega)$ defined on $W_0^{2m,2}(Omega)$, associated with the higher-order differential expression $$ tau_{2m} (a,b,q) := bigg(sum_{j,k=1}^{n} (-i partial_j - b_j) a_{j,k} (-i partial_k - b_k)+qbigg)^m, quad m in mathbb{N}, $$ and its Krein--von Neumann extension $A_{K, Omega, 2m} (a,b,q)$ in $L^2(Omega)$. Denoting by $N(lambda; A_{K, Omega, 2m} (a,b,q))$, $lambda > 0$, the eigenvalue counting function corresponding to the strictly positive eigenvalues of $A_{K, Omega, 2m} (a,b,q)$, we derive the bound $$ N(lambda; A_{K, Omega, 2m} (a,b,q)) leq C v_n (2pi)^{-n} bigg(1+frac{2m}{2m+n}bigg)^{n/(2m)} lambda^{n/(2m)} , quad lambda > 0, $$ where $C = C(a,b,q,Omega)>0$ (with $C(I_n,0,0,Omega) = |Omega|$) is connected to the eigenfunction expansion of the self-adjoint operator $widetilde A_{2m} (a,b,q)$ in $L^2(mathbb{R}^n)$ defined on $W^{2m,2}(mathbb{R}^n)$, corresponding to $tau_{2m} (a,b,q)$. Here $v_n := pi^{n/2}/Gamma((n+2)/2)$ denotes the (Euclidean) volume of the unit ball in $mathbb{R}^n$. Our method of proof relies on variational considerations exploiting the fundamental link between the Krein--von Neumann extension and an underlying abstract buckling problem, and on the distorted Fourier transform defined in terms of the eigenfunction transform of $widetilde A_{2} (a,b,q)$ in $L^2(mathbb{R}^n)$. We also consider the analogous bound for the eigenvalue counting function for the Friedrichs extension $A_{F,Omega, 2m} (a,b,q)$ in $L^2(Omega)$ of $A_{Omega, 2m} (a,b,q)$. No assumptions on the boundary $partial Omega$ of $Omega$ are made.



rate research

Read More

We prove that among all triangles of given diameter, the equilateral triangle minimizes the sum of the first $n$ eigenvalues of the Neumann Laplacian, when $n geq 3$. The result fails for $n=2$, because the second eigenvalue is known to be minimal for the degenerate acute isosceles triangle (rather than for the equilateral) while the first eigenvalue is 0 for every triangle. We show the third eigenvalue is minimal for the equilateral triangle.
We revisit the Krein-von Neumann extension in the case where the underlying symmetric operator is strictly positive and apply this to derive the explicit form of the Krein-von Neumann extension for singular, general (i.e., three-coefficient) Sturm-Liouville operators on arbitrary intervals. In particular, the boundary conditions for the Krein-von Neumann extension of the strictly positive minimal Sturm-Liouville operator are explicitly expressed in terms of generalized boundary values adapted to the (possible) singularity structure of the coefficients near an interval endpoint.
We study spectral properties of Dirac operators on bounded domains $Omega subset mathbb{R}^3$ with boundary conditions of electrostatic and Lorentz scalar type and which depend on a parameter $tauinmathbb{R}$; the case $tau = 0$ corresponds to the MIT bag model. We show that the eigenvalues are parametrized as increasing functions of $tau$, and we exploit this monotonicity to study the limits as $tau to pm infty$. We prove that if $Omega$ is not a ball then the first positive eigenvalue is greater than the one of a ball with the same volume for all $tau$ large enough. Moreover, we show that the first positive eigenvalue converges to the mass of the particle as $tau downarrow -infty$, and we also analyze its first order asymptotics.
Local operations with classical communication (LOCC) and separable operations are two classes of quantum operations that play key roles in the study of quantum entanglement. Separable operations are strictly more powerful than LOCC, but no simple explanation of this phenomenon is known. We show that, in the case of von Neumann measurements, the ability to interpolate measurements is an operational principle that sets apart LOCC and separable operations.
262 - Delio Mugnolo 2014
We discuss the Krein--von Neumann extensions of three Laplacian-type operators -- on discrete graphs, quantum graphs, and domains. In passing we present a class of one-dimensional elliptic operators such that for any $nin mathbb N$ infinitely many elements of the class have $n$-dimensional null space.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا