We prove the unitary equivalence of the inverse of the Krein--von Neumann extension (on the orthogonal complement of its kernel) of a densely defined, closed, strictly positive operator, $Sgeq epsilon I_{mathcal{H}}$ for some $epsilon >0$ in a Hilbert space $mathcal{H}$ to an abstract buckling problem operator. In the concrete case where $S=bar{-Delta|_{C_0^infty(Omega)}}$ in $L^2(Omega; d^n x)$ for $Omegasubsetmathbb{R}^n$ an open, bounded (and sufficiently regular) domain, this recovers, as a particular case of a general result due to G. Grubb, that the eigenvalue problem for the Krein Laplacian $S_K$ (i.e., the Krein--von Neumann extension of $S$), [ S_K v = lambda v, quad lambda eq 0, ] is in one-to-one correspondence with the problem of {em the buckling of a clamped plate}, [ (-Delta)^2u=lambda (-Delta) u text{in} Omega, quad lambda eq 0, quad uin H_0^2(Omega), ] where $u$ and $v$ are related via the pair of formulas [ u = S_F^{-1} (-Delta) v, quad v = lambda^{-1}(-Delta) u, ] with $S_F$ the Friedrichs extension of $S$. This establishes the Krein extension as a natural object in elasticity theory (in analogy to the Friedrichs extension, which found natural applications in quantum mechanics, elasticity, etc.).
In the first (and abstract) part of this survey we prove the unitary equivalence of the inverse of the Krein--von Neumann extension (on the orthogonal complement of its kernel) of a densely defined, closed, strictly positive operator, $Sgeq varepsilon I_{mathcal{H}}$ for some $varepsilon >0$ in a Hilbert space $mathcal{H}$ to an abstract buckling problem operator. This establishes the Krein extension as a natural object in elasticity theory (in analogy to the Friedrichs extension, which found natural applications in quantum mechanics, elasticity, etc.). In the second, and principal part of this survey, we study spectral properties for $H_{K,Omega}$, the Krein--von Neumann extension of the perturbed Laplacian $-Delta+V$ (in short, the perturbed Krein Laplacian) defined on $C^infty_0(Omega)$, where $V$ is measurable, bounded and nonnegative, in a bounded open set $Omegasubsetmathbb{R}^n$ belonging to a class of nonsmooth domains which contains all convex domains, along with all domains of class $C^{1,r}$, $r>1/2$.
For an arbitrary open, nonempty, bounded set $Omega subset mathbb{R}^n$, $n in mathbb{N}$, and sufficiently smooth coefficients $a,b,q$, we consider the closed, strictly positive, higher-order differential operator $A_{Omega, 2m} (a,b,q)$ in $L^2(Omega)$ defined on $W_0^{2m,2}(Omega)$, associated with the higher-order differential expression $$ tau_{2m} (a,b,q) := bigg(sum_{j,k=1}^{n} (-i partial_j - b_j) a_{j,k} (-i partial_k - b_k)+qbigg)^m, quad m in mathbb{N}, $$ and its Krein--von Neumann extension $A_{K, Omega, 2m} (a,b,q)$ in $L^2(Omega)$. Denoting by $N(lambda; A_{K, Omega, 2m} (a,b,q))$, $lambda > 0$, the eigenvalue counting function corresponding to the strictly positive eigenvalues of $A_{K, Omega, 2m} (a,b,q)$, we derive the bound $$ N(lambda; A_{K, Omega, 2m} (a,b,q)) leq C v_n (2pi)^{-n} bigg(1+frac{2m}{2m+n}bigg)^{n/(2m)} lambda^{n/(2m)} , quad lambda > 0, $$ where $C = C(a,b,q,Omega)>0$ (with $C(I_n,0,0,Omega) = |Omega|$) is connected to the eigenfunction expansion of the self-adjoint operator $widetilde A_{2m} (a,b,q)$ in $L^2(mathbb{R}^n)$ defined on $W^{2m,2}(mathbb{R}^n)$, corresponding to $tau_{2m} (a,b,q)$. Here $v_n := pi^{n/2}/Gamma((n+2)/2)$ denotes the (Euclidean) volume of the unit ball in $mathbb{R}^n$. Our method of proof relies on variational considerations exploiting the fundamental link between the Krein--von Neumann extension and an underlying abstract buckling problem, and on the distorted Fourier transform defined in terms of the eigenfunction transform of $widetilde A_{2} (a,b,q)$ in $L^2(mathbb{R}^n)$. We also consider the analogous bound for the eigenvalue counting function for the Friedrichs extension $A_{F,Omega, 2m} (a,b,q)$ in $L^2(Omega)$ of $A_{Omega, 2m} (a,b,q)$. No assumptions on the boundary $partial Omega$ of $Omega$ are made.