Do you want to publish a course? Click here

Neumann eigenvalue sums on triangles are (mostly) minimal for equilaterals

101   0   0.0 ( 0 )
 Added by Richard Laugesen
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We prove that among all triangles of given diameter, the equilateral triangle minimizes the sum of the first $n$ eigenvalues of the Neumann Laplacian, when $n geq 3$. The result fails for $n=2$, because the second eigenvalue is known to be minimal for the degenerate acute isosceles triangle (rather than for the equilateral) while the first eigenvalue is 0 for every triangle. We show the third eigenvalue is minimal for the equilateral triangle.



rate research

Read More

For an arbitrary open, nonempty, bounded set $Omega subset mathbb{R}^n$, $n in mathbb{N}$, and sufficiently smooth coefficients $a,b,q$, we consider the closed, strictly positive, higher-order differential operator $A_{Omega, 2m} (a,b,q)$ in $L^2(Omega)$ defined on $W_0^{2m,2}(Omega)$, associated with the higher-order differential expression $$ tau_{2m} (a,b,q) := bigg(sum_{j,k=1}^{n} (-i partial_j - b_j) a_{j,k} (-i partial_k - b_k)+qbigg)^m, quad m in mathbb{N}, $$ and its Krein--von Neumann extension $A_{K, Omega, 2m} (a,b,q)$ in $L^2(Omega)$. Denoting by $N(lambda; A_{K, Omega, 2m} (a,b,q))$, $lambda > 0$, the eigenvalue counting function corresponding to the strictly positive eigenvalues of $A_{K, Omega, 2m} (a,b,q)$, we derive the bound $$ N(lambda; A_{K, Omega, 2m} (a,b,q)) leq C v_n (2pi)^{-n} bigg(1+frac{2m}{2m+n}bigg)^{n/(2m)} lambda^{n/(2m)} , quad lambda > 0, $$ where $C = C(a,b,q,Omega)>0$ (with $C(I_n,0,0,Omega) = |Omega|$) is connected to the eigenfunction expansion of the self-adjoint operator $widetilde A_{2m} (a,b,q)$ in $L^2(mathbb{R}^n)$ defined on $W^{2m,2}(mathbb{R}^n)$, corresponding to $tau_{2m} (a,b,q)$. Here $v_n := pi^{n/2}/Gamma((n+2)/2)$ denotes the (Euclidean) volume of the unit ball in $mathbb{R}^n$. Our method of proof relies on variational considerations exploiting the fundamental link between the Krein--von Neumann extension and an underlying abstract buckling problem, and on the distorted Fourier transform defined in terms of the eigenfunction transform of $widetilde A_{2} (a,b,q)$ in $L^2(mathbb{R}^n)$. We also consider the analogous bound for the eigenvalue counting function for the Friedrichs extension $A_{F,Omega, 2m} (a,b,q)$ in $L^2(Omega)$ of $A_{Omega, 2m} (a,b,q)$. No assumptions on the boundary $partial Omega$ of $Omega$ are made.
We study spectral properties of Dirac operators on bounded domains $Omega subset mathbb{R}^3$ with boundary conditions of electrostatic and Lorentz scalar type and which depend on a parameter $tauinmathbb{R}$; the case $tau = 0$ corresponds to the MIT bag model. We show that the eigenvalues are parametrized as increasing functions of $tau$, and we exploit this monotonicity to study the limits as $tau to pm infty$. We prove that if $Omega$ is not a ball then the first positive eigenvalue is greater than the one of a ball with the same volume for all $tau$ large enough. Moreover, we show that the first positive eigenvalue converges to the mass of the particle as $tau downarrow -infty$, and we also analyze its first order asymptotics.
We consider Schroedinger operators on regular metric trees and prove Lieb-Thirring and Cwikel-Lieb-Rozenblum inequalities for their negative eigenvalues. The validity of these inequalities depends on the volume growth of the tree. We show that the bounds are valid in the endpoint case and reflect the correct order in the weak or strong coupling limit.
248 - Genqian Liu , Xiaoming Tan 2021
This paper is devoted to investigate the heat trace asymptotic expansion corresponding to the magnetic Steklov eigenvalue problem on Riemannian manifolds with boundary. We establish an effective procedure, by which we can calculate all the coefficients $a_0$, $a_1$, $dots$, $a_{n-1}$ of the heat trace asymptotic expansion. In particular, we explicitly give the expressions for the first four coefficients. These coefficients are spectral invariants which provide precise information concerning the volume and curvatures of the boundary of the manifold and some physical quantities by the magnetic Steklov eigenvalues.
In this paper, we consider the long time dynamics of radially symmetric solutions of nonlinear Schrodinger equations (NLS) having a minimal mass ground state. In particular, we show that there exist solutions with initial data near the minimal mass ground state that oscillate for long time. More precisely, we introduce a coordinate defined near the minimal mass ground state which consists of finite and infinite dimensional part associated to the discrete and continuous part of the linearized operator. Then, we show that the finite dimensional part, two dimensional, approximately obeys Newtons equation of motion for a particle in an anharmonic potential well. Showing that the infinite dimensional part is well separated from the finite dimensional part, we will have long time oscillation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا