Do you want to publish a course? Click here

Monolithic AlGaAs second-harmonic nanoantennas

541   0   0.0 ( 0 )
 Added by Valerio Flavio Gili
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate monolithic aluminum gallium arsenide (AlGaAs) optical anoantennas. Using a selective oxidation technique, we fabricate such epitaxial semiconductor nanoparticles on an aluminum oxide substrate. Second harmonic generation from an AlGaAs nanocylinder of height h=400 nm and varying radius pumped with femtosecond pulses delivered at 1554-nm wavelength has been measured, revealing a peak conversion efficiency exceeding 10-5 for nanocylinders with an otpimized geometry.



rate research

Read More

158 - Tingting Liu , Shuyuan Xiao 2021
The ability to engineer nonlinear optical processes in all-dielectric nanostructures is both of fundamental interest and highly desirable for high-performance, robust, and miniaturized nonlinear optical devices. Herein, we propose a novel paradigm for the efficient tuning of second-harmonic generation (SHG) process in dielectric nanoantennas by integrating with chalcogenide phase change material. In a design with Ge$_{2}$Sb$_{2}$Te$_{5}$ (GST) film sandwiched between the AlGaAs nanoantennas and AlO$_{x}$ substrate, the nonlinear SHG signal from the AlGaAs nanoantennas can be boosted via the resonantly localized field induced by the optically-induced Mie-type resonances, and further modulated by exploiting the GST amorphous-to-crystalline phase change in a non-volatile, multi-level manner. The tuning strategy originates from the modulation of resonant conditions by changes in the refractive index of GST. With a thorough examination of tuning performances for different nanoantenna radii, a maximum modulation depth as high as 540$%$ is numerically demonstrated. This work not only reveals out the potential of GST in optical nonlinearity control, but also provides promising strategy in smart designing tunable and reconfigurable nonlinear optical devices, e.g., light emitters, modulators, and sensors.
We employ structured light for the second-harmonic generation from subwavelength AlGaAs nanoparticles that support both electric and magnetic multipolar Mie resonances. The vectorial structure of the pump beam allows addressing selectively Mie-resonant modes and control the strength of the generated nonlinear fields. We observe experimentally the enhancement of the second-harmonic generation for the azimuthally polarized vector beams near magnetic dipole resonance, and match our observations with the numerical decomposion of the Mie-type multipoles for the fundamental and generated second-harmonic fields
A scheme for active second harmonics generation is suggested. The system comprises $N$ three-level atoms in ladder configuration, situated into resonant cavity. It is found that the system can lase in either superradiant or subradiant regime, depending on the number of atoms $N$. When N passes some critical value the transition from the super to subradiance occurs in a phase-transition-like manner. Stability study of the steady state supports this conclusion.
In addition to their strong nonlinear optical response, transition metal dichalcogenides (TMDCs) possess a high refractive index in the visible and infrared regime. Therefore, by patterning those TMDCs into dielectric nanoresonators, one can generate highly confined electromagnetic modes. Controlled fabrication of TMDC nanoresonators does not only enhance the materials intrinsic nonlinear response, but also allows for spatially shaping the emission via nanoresonator arrays. Here we fabricate patterned WS2 disks that support a high internal resonant electric field and show strong enhancement of second harmonic (SH) generation in the visible regime. In addition, we assemble the WS2 disks in arrays to spatially direct the coherent SH emission, in analogy to phased array antennas. Finally, we investigate and discuss drastic differences in the areal emission origin and intensity of the measured SH signals, which we find to depend on material variations of the used bulk WS2.
Efficient frequency conversion techniques are crucial to the development of plasmonic metasurfaces for information processing and signal modulation. In principle, nanoscale electric-field confinement in nonlinear materials enables higher harmonic conversion efficiencies per unit volume than those attainable in bulk materials. Here we demonstrate efficient second-harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients on a dielectric metasurface. An ultrafast pump is used to control plasmon-induced electric fields in a thin-film material with inversion symmetry that, without plasmonic enhancement, does not exhibit an an even-order nonlinear optical response. The temporal evolution of the plasmonic near-field is characterized with ~100as resolution using a novel nonlinear interferometric technique. The ability to manipulate nonlinear signals in a metamaterial geometry as demonstrated here is indispensable both to understanding the ultrafast nonlinear response of nanoscale materials, and to producing active, optically reconfigurable plasmonic devices
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا