No Arabic abstract
We consider response function and spin evolution in spin-orbit coupled cold atomic gases in a synthetic gauge magnetic field influencing solely the orbital motion of atoms. We demonstrate that various regimes of spin-orbit coupling strength, magnetic field, and disorder can be treated within a single approach based on the representation of atomic motion in terms of auxiliary collective classical trajectories. Our approach allows for a unified description of fermionic and bosonic gases.
We theoretically analyze superradiant emission of light from a cold atomic gas, when mechanical effects of photon-atom interactions are considered. The atoms are confined within a standing-wave resonator and an atomic metastable dipolar transition couples to a cavity mode. The atomic dipole is incoherently pumped in the parameter regime that would correspond to stationary superradiance in absence of inhomogeneous broadening. Starting from the master equation for cavity field and atomic degrees of freedom we derive a mean-field model that allows us to determine a threshold temperature, above which thermal fluctuations suppress superradiant emission. We then analyze the dynamics of superradiant emission when the motion is described by a mean-field model. In the semiclassical regime and below the threshold temperature we observe that the emitted light can be either coherent or chaotic, depending on the incoherent pump rate. We then analyze superradiant emission from an ideal Bose gas at zero temperature when the superradiant decay rate $Lambda$ is of the order of the recoil frequency $omega_R$. We show that the quantized exchange of mechanical energy between the atoms and the field gives rise to a threshold, $Lambda_c$, below which superradiant emission is damped down to zero. When $Lambda>Lambda_c$ superradiant emission is accompanied by the formation of matter-wave gratings diffracting the emitted photons. The stability of these gratings depends on the incoherent pump rate $w$ with respect to a second threshold value $w_c$. For $w>w_c$ the gratings are stable and the system achieves stationary superradiance. Below this second threshold the coupled dynamics becomes chaotic. We characterize the dynamics across these two thresholds and show that the three phases we predict (incoherent, coherent, chaotic) can be revealed via the coherence properties of the light at the cavity output.
We study the exact solution for two atomic particles in an optical lattice interacting via a Feshbach resonance. The analysis includes the influence of all higher bands, as well as the proper renormalization of molecular energy in the closed channel. Using an expansion in Bloch waves, we show that the problem reduces to a simple matrix equation, which can be solved numerically very efficient. This exact solution allows for the precise determination of the parameters in the Hubbard model and the two-particle bound state energy. We identify the regime, where a single band Hubbard model fails to describe the scattering of the atoms as well as the bound states.
Spin-orbit coupling is an important ingredient in many recently discovered phenomena such as the spin-Hall effect and topological insulators. Of particular interest is topological superconductivity, with its potential application in topological quantum computation. The absence of disorder in ultra-cold atomic systems makes them ideal for quantum computation applications, however, the spin-orbit (SO) coupling schemes proposed thus far are experimentally impractical owing to large spontaneous emission rates in the alkali fermions. In this paper, we develop a scheme to generate Rashba SO coupling with a low spontaneous emission extension to a recent experiment. We show that this scheme generates a Fermi surface spin texture for $^{40}rm{K}$ atoms, which is observable in time-of-flight measurements. The chiral spin texture, together with conventional $s$-wave interactions leads to topological superconductivity and non-Abelian Majorana quasiparticles.
We study the left-right asymmetric model based on SU(3)_C otimes SU(2)_L otimes SU(3)_R otimes U(1)_X gauge group, which improves the theoretical and phenomenological aspects of the known left-right symmetric model. This new gauge symmetry yields that the fermion generation number is three, and the tree-level flavor-changing neutral currents arise in both gauge and scalar sectors. Also, it can provide the observed neutrino masses as well as dark matter automatically. Further, we investigate the mass spectrum of the gauge and scalar fields. All the gauge interactions of the fermions and scalars are derived. We examine the tree-level contributions of the new neutral vector, Z_R, and new neutral scalar, H_2, to flavor-violating neutral meson mixings, say K-bar{K}, B_d-bar{B}_d, and B_s-bar{B}_s, which strongly constrain the new physics scale as well as the elements of the right-handed quark mixing matrices. The bounds for the new physics scale are in agreement with those coming from the rho-parameter as well as the mixing parameters between W, Z bosons and new gauge bosons.
Some thoughts regarding pairing in atomic Fermi gases were considered, meant for starting discussion on the topic.