Do you want to publish a course? Click here

Dual-fermion approach to the Anderson-Hubbard model

158   0   0.0 ( 0 )
 Added by Patrick Haase
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We apply the recently developed dual fermion algorithm for disordered interacting systems to the Anderson-Hubbard model. This algorithm is compared with dynamical cluster approximation calculations for a one-dimensional system to establish the quality of the approximation in comparison with an established cluster method. We continue with a three-dimensional (3d) system and look at the antiferromagnetic, Mott and Anderson localization transitions. The dual fermion approach leads to quantitative as well as qualitative improvement of the dynamical mean-field results and it allows one to calculate the hysteresis in the double occupancy in 3d taking into account nonlocal correlations.



rate research

Read More

We present an efficient diagrammatic method to describe nonlocal correlation effects in lattice fermion Hubbard-like models, which is based on a change of variables in the Grassmann path integrals. The new fermions are dual to the original ones and correspond to weakly interacting quasiparticles in the case of strong local correlations in the Hubbard model. The method starts with dynamical mean-field theory as a zeroth-order approximation and includes non-local effects in a perturbative way. In contrast to cluster approaches, this method utilizes an exact transition to a dual set of variables. It therefore becomes possible to treat the irreducible vertices of an effective {it single-impurity} problem as small parameters. This provides a very efficient interpolation between band-like weak-coupling and atomic limits. The method is illustrated on the two-dimensional Hubbard model. The antiferromagnetic pseudogap, Fermi-arc formations, and non-Fermi-liquid effects due to the van Hove singularity are correctly reproduced by the lowest-order diagrams. Extremum properties of the dual fermion approach are discussed in terms of the Feynman variational principle.
We generalize the recently introduced dual fermion (DF) formalism for disordered fermion systems by including the effect of interactions. For an interacting disordered system the contributions to the full vertex function have to be separated into elastic and inelastic scattering processes, and addressed differently when constructing the DF diagrams. By applying our approach to the Anderson-Falicov-Kimball model and systematically restoring the nonlocal correlations in the DF lattice calculation, we show a significant improvement over the Dynamical Mean-Field Theory and the Coherent Potential Approximation for both one-particle and two-particle quantities.
In this work we introduce the Dual Boson Diagrammatic Monte Carlo technique for strongly interacting electronic systems. This method combines the strength of dynamical mean-filed theory for non-perturbative description of local correlations with the systematic account of non-local corrections in the Dual Boson theory by the diagrammatic Monte Carlo approach. It allows us to get a numerically exact solution of the dual boson theory at the two-particle local vertex level for the extended Hubbard model. We show that it can be efficiently applied to description of single particle observables in a wide range of interaction strengths. We compare our exact results for the self-energy with the ladder Dual Boson approach and determine a physical regime, where description of collective electronic effects requires more accurate consideration beyond the ladder approximation. Additionally, we find that the order-by-order analysis of the perturbative diagrammatic series for the single-particle Greens function allows to estimate the transition point to the charge density wave phase.
136 - C. Jung , A. Lieder , S. Brener 2010
We present a generalization of the recently developed dual fermion approach introduced for correlated lattices to non-equilibrium problems. In its local limit, the approach has been used to devise an efficient impurity solver, the superperturbation solver for the Anderson impurity model (AIM). Here we show that the general dual perturbation theory can be formulated on the Keldysh contour. Starting from a reference Hamiltonian system, in which the time-dependent solution is found by exact diagonalization, we make a dual perturbation expansion in order to account for the relaxation effects from the fermionic bath. Simple test results for closed as well as open quantum systems in a fermionic bath are presented.
In this paper, we show how the two-particle Green function (2PGF) can be obtained within the framework of the Dual Fermion approach. This facilitates the calculation of the susceptibility in strongly correlated systems where long-ranged non-local correlations cannot be neglected. We formulate the Bethe-Salpeter equations for the full vertex in the particle-particle and particle-hole channels and introduce an approximation for practical calculations. The scheme is applied to the two-dimensional Hubbard model at half filling. The spin-spin susceptibility is found to strongly increase for the wavevector $vc{q}=(pi,pi)$, indicating the antiferromagnetic instability. We find a suppression of the critical temperature compared to the mean-field result due to the incorporation of the non-local spin-fluctuations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا