Do you want to publish a course? Click here

Multiple-pseudogap phases in hydrogen-doped LaFeAsO system

181   0   0.0 ( 0 )
 Added by Asuka Nakamura
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The low energy electronic structure of LaFeAsO1-xHx (0.0 < x < 0.60), the system which exhibits two superconducting domes in its phase diagram, is investigated by utilizing the laser photoemission spectroscopy. From the precise temperature-dependent measurement of the spectra near the Fermi level, we find the suppression of the density of states with cooling, namely the pseudogap formation, for all doping range. The pseudogap in the low x range (i.e. the first superconducting dome regime) gets suppressed with increasing x, more or less similarly to the previous results in F-doped LaFeAsO system. On the other hand, the pseudogap behavior in the second superconducting dome regime at high-x becomes stronger with increasing the H-doping level. The systematic doping dependence shows that the pseudogap is enhanced toward the both ends of the phase diagram where the different types of antiferromagnetic order exist.

rate research

Read More

Here we report the synthesis and basic characterization of LaFe1-xCoxAsO for several values of x. The parent phase LaFeAsO orders antiferromagnetically (TN ~ 145 K). Replacing Fe with Co is expected to both electron dope the system and introduce disorder in the FeAs layer. For x = 0.05 antiferromagnetic order is destroyed and superconductivity is observed at Tconset = 11.2 K. For x = 0.11 superconductivity is observed at Tc(onset) = 14.3 K, and for x = 0.15 Tc = 6.0 K. Superconductivity is not observed for x = 0.2 and 0.5, but for x = 1, the material appears to be ferromagnetic (Tc ~ 56 K) as judged by magnetization measurements. We conclude that Co is an effective dopant to induce superconductivity. Somewhat surprisingly, the system appears to tolerate considerable disorder in the FeAs planes.
We have studied Ni-substitution effect in LaFe$_{1-x}$Ni$_{x}$AsO ($0leq x leq0.1$) by the measurements of x-ray diffraction, electrical resistivity, magnetic susceptibility, and heat capacity. The nickel doping drastically suppresses the resistivity anomaly associated with spin-density-wave ordering in the parent compound. Superconductivity emerges in a narrow region of $0.03leq x leq0.06$ with the maximum $T_c$ of 6.5 K at $x$=0.04, where enhanced magnetic susceptibility shows up. The upper critical field at zero temperature is estimated to exceed the Pauli paramagnetic limit. The much lowered $T_c$ in comparison with LaFeAsO$_{1-x}$F$_{x}$ system is discussed.
Defined substoichiometric titanium oxides (Ti$_x$O$_{2x-1}$ with $3 < x < 10$) called Magneli phases have been investigated mostly for their unusual high conductivity and metal-like behavior. In photocatalysis, Magneli phase containing titania particles have been reported to provide favorable charge separation resulting in enhanced reaction efficiency. In the current work we describe a one-step synthesis of Magneli-containing mixed phase nanoparticles that carry directly integrated minute amounts of Pt. Phase optimized nanoparticles that contain only a few hundred ppm Pt are very effective photocatalysts for H$_2$ evolution (they provide a 50-100 times higher H$_2$ evolution than plain anatase loaded with a similar amount of Pt). These photocatalysts are synthesized in a setup combining a hot-wall reactor that is used for TiOx synthesis with a spark generator producing Pt nanoparticles. Different reactor temperatures result in various phase ratios between anatase and Magneli phases. The titania nanoparticles (ca. 24 - 53 nm) were characterized using XRD, HRTEM, XPS and EPR spectra as well as ICP-OES analysis. The best photocatalyst prepared at 900$^circ$C (which consists of mixed phase particles of 32% anatase, 11% rutile and 57% Magneli phases loaded with 290 ppm of Pt) can provide a photocatalytic H$_2$ evolution rate of ca. 5432 micromol h$^{-1} g$^{-1}$ for UV and ca. 1670 micromol h$^{-1} g$^{-1}$ for AM1.5 illumination. For powders converted to higher amounts of Magneli phases (1000$^circ$C and 1100$^circ$C), a drastic loss of the photocatalytic H$_2$ generation activity is observed. Thus, the high photocatalytic efficiency under best conditions is ascribed to an effective synergy between multi-junctions of Magneli titania and Pt that enable a much more effective charge separation and reaction than conventional Pt/anatase junctions.
We present the first study of thermal conductivity in superconducting SrTi$_{1-x}$Nb$_{x}$O$_{3}$, sufficiently doped to be near its maximum critical temperature. The bulk critical temperature, determined by the jump in specific heat, occurs at a significantly lower temperature than the resistive T$_{c}$. Thermal conductivity, dominated by the electron contribution, deviates from its normal-state magnitude at bulk T$_{c}$, following a Bardeen-Rickayzen-Tewordt (BRT) behavior, expected for thermal transport by Bogoliubov excitations. Absence of a T-linear term at very low temperatures rules out the presence of nodal quasi-particles. On the other hand, the field dependence of thermal conductivity points to the existence of at least two distinct superconducting gaps. We conclude that optimally-doped strontium titanate is a multigap nodeless superconductor.
Topological insulators/semimetals and unconventional iron-based superconductors have attracted major attentions in condensed matter physics in the past 10 years. However, there is little overlap between these two fields, although the combination of topological states and superconducting states will produce more exotic topologically superconducting states and Majorana bound states (MBS), a promising candidate for realizing topological quantum computations. With the progress in laser-based spin-resolved and angle-resolved photoemission spectroscopy (ARPES) with very high energy- and momentum-resolution, we directly resolved the topological insulator (TI) phase and topological Dirac semimetal (TDS) phase near Fermi level ($E_F$) in the iron-based superconductor Li(Fe,Co)As. The TI and TDS phases can be separately tuned to $E_F$ by Co doping, allowing a detailed study of different superconducting topological states in the same material. Together with the topological states in Fe(Te,Se), our study shows the ubiquitous coexistence of superconductivity and multiple topological phases in iron-based superconductors, and opens a new age for the study of high-Tc iron-based superconductors and topological superconductivity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا