Do you want to publish a course? Click here

Procedural Generation of Angry Birds Levels using Building Constructive Grammar with Chinese-Style and/or Japanese-Style Models

139   0   0.0 ( 0 )
 Added by Ruck Thawonmas
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

This paper presents a procedural generation method that creates visually attractive levels for the Angry Birds game. Besides being an immensely popular mobile game, Angry Birds has recently become a test bed for various artificial intelligence technologies. We propose a new approach for procedurally generating Angry Birds levels using Chinese style and Japanese style building structures. A conducted experiment confirms the effectiveness of our approach with statistical significance.



rate research

Read More

Over the past few years the Angry Birds AI competition has been held in an attempt to develop intelligent agents that can successfully and efficiently solve levels for the video game Angry Birds. Many different agents and strategies have been developed to solve the complex and challenging physical reasoning problems associated with such a game. However none of these agents attempt one of the key strategies which humans employ to solve Angry Birds levels, which is restarting levels. Restarting is important in Angry Birds because sometimes the level is no longer solvable or some given shot made has little to no benefit towards the ultimate goal of the game. This paper proposes a framework and experimental evaluation for when to restart levels in Angry Birds. We demonstrate that restarting is a viable strategy to improve agent performance in many cases.
This demo paper presents the first system for playing the popular Angry Birds game using a domain-independent planner. Our system models Angry Birds levels using PDDL+, a planning language for mixed discrete/continuous domains. It uses a domain-independent PDDL+ planner to generate plans and executes them. In this demo paper, we present the systems PDDL+ model for this domain, identify key design decisions that reduce the problem complexity, and compare the performance of our system to model-specific methods for this domain. The results show that our systems performance is on par with other domain-specific systems for Angry Birds, suggesting the applicability of domain-independent planning to this benchmark AI challenge.
278 - Anurag Sarkar , Seth Cooper 2021
Behavior trees (BTs) are a popular method of modeling the behavior of NPCs and enemy AI and have found widespread use in a large number of commercial games. In this paper, rather than use BTs to model game-playing agents, we demonstrate their use for modeling game design agents, defining behaviors as executing content generation tasks rather than in-game actions. Similar to how traditional BTs enable modeling behaviors in a modular and dynamic manner, BTs for PCG enable simple subtrees for generating parts of levels to be combined modularly to form more complex trees for generating whole levels as well as generators that can dynamically vary the generated content. We demonstrate this approach by using BTs to model generators for Super Mario Bros., Mega Man and Metroid levels as well as dungeon layouts and discuss several ways in which this PCGBT paradigm could be applied and extended in the future.
Recent neural approaches to data-to-text generation have mostly focused on improving content fidelity while lacking explicit control over writing styles (e.g., word choices, sentence structures). More traditional systems use templates to determine the realization of text. Yet manual or automatic construction of high-quality templates is difficult, and a template acting as hard constraints could harm content fidelity when it does not match the record perfectly. We study a new way of stylistic control by using existing sentences as soft templates. That is, the model learns to imitate the writing style of any given exemplar sentence, with automatic adaptions to faithfully describe the content record. The problem is challenging due to the lack of parallel data. We develop a neural approach that includes a hybrid attention-copy mechanism, learns with weak supervisions, and is enhanced with a new content coverage constraint. We conduct experiments in restaurants and sports domains. Results show our approach achieves stronger performance than a range of comparison methods. Our approach balances well between content fidelity and style control given exemplars that match the records to varying degrees.
Current storytelling systems focus more ongenerating stories with coherent plots regard-less of the narration style, which is impor-tant for controllable text generation. There-fore, we propose a new task, stylized story gen-eration, namely generating stories with speci-fied style given a leading context. To tacklethe problem, we propose a novel generationmodel that first plans the stylized keywordsand then generates the whole story with theguidance of the keywords. Besides, we pro-pose two automatic metrics to evaluate theconsistency between the generated story andthe specified style. Experiments demonstratesthat our model can controllably generateemo-tion-driven orevent-driven stories based onthe ROCStories dataset (Mostafazadeh et al.,2016). Our study presents insights for stylizedstory generation in further research.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا