No Arabic abstract
One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty of manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. v{Z}elezny et al., PRL 113, 157201 (2014)], the electrical switching of magnetic moments in an antiferromagnet has been demonstrated [P. Wadley et al., Science 351, 587 (2016)]. The switching is due to the so-called spin-orbit torque, which has been extensively studied in ferromagnets. In this phenomena a non-equilibrium spin-polarization exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order parameter. Here we give a general systematic analysis of the symmetry of the spin-orbit torque in locally and globally non-centrosymmetric crystals. We study when the symmetry allows for a nonzero torque, when is the torque effective, and its dependence on the applied current direction and orientation of magnetic moments. For comparison, we consider both antiferromagnetic and ferromagnetic orders. In two representative model crystals we perform microscopic calculations of the spin-orbit torque to illustrate its symmetry properties and to highlight conditions under which the spin-orbit torque can be efficient for manipulating antiferromagnetic moments.
Spin current generators are critical components for spintronics-based information processing. In this work, we theoretically and computationally investigate the bulk spin photovoltaic (BSPV) effect for creating DC spin current under light illumination. The only requirement for BPSV is inversion symmetry breaking, thus it applies to a broad range of materials and can be readily integrated with existing semiconductor technologies. The BSPV effect is a cousin of the bulk photovoltaic (BPV) effect, whereby a DC charge current is generated under light. Thanks to the different selection rules on spin and charge currents, a pure spin current can be realized if the system possesses mirror symmetry or inversion-mirror symmetry. The mechanism of BPSV and the role of the electronic relaxation time $tau$ are also elucidated. We apply our theory to several distinct material systems, including transition metal dichalcogenides, anti-ferromagnetic $rm MnBi_2Te_4$, and the surface of topological crystalline insulator cubic $rm SnTe$.
Current induced spin-orbit torques have been studied in ferromagnetic nanowires made of 20 nm thick Co/Pd multilayers with perpendicular magnetic anisotropy. Using Hall voltage and lock-in measurements, it is found that upon injection of an electric current both in-plane (Slonczewski-like) and perpendicular (field-like) torques build up in the nanowire. The torque efficiencies are found to be as large as 1.17 kOe and 5 kOe at 108 A/cm2 for the in-plane and perpendicular components, respectively, which is surprisingly comparable to previous studies in ultrathin (~ 1 nm) magnetic bilayers. We show that this result cannot be explained solely by spin Hall effect induced torque at the outer interfaces, indicating a probable contribution of the bulk of the Co/Pd multilayer.
Transition metal dichalcogenides (TMDs) are promising materials for efficient generation of current-induced spin-orbit torques on an adjacent ferromagnetic layer. Numerous effects, both interfacial and bulk, have been put forward to explain the different torques previously observed. Thus far, however, there is no clear consensus on the microscopic origin underlying the spin-orbit torques observed in these TMD/ferromagnet bilayers. To shine light on the microscopic mechanisms at play, here we perform thickness dependent spin-orbit torque measurements on the semiconducting WSe$_{2}$/permalloy bilayer with various WSe$_{2}$ layer thickness, down to the monolayer limit. We observe a large out-of-plane field-like torque with spin-torque conductivities up to $1times10^4 ({hbar}/2e) ({Omega}m)^{-1}$. For some devices, we also observe a smaller in-plane antidamping-like torque, with spin-torque conductivities up to $4times10^{3} ({hbar}/2e) ({Omega}m)^{-1}$, comparable to other TMD-based systems. Both torques show no clear dependence on the WSe$_{2}$ thickness, as expected for a Rashba system. Unexpectedly, we observe a strong in-plane magnetic anisotropy - up to about $6.6times10^{4} erg/cm^{3}$ - induced in permalloy by the underlying hexagonal WSe$_{2}$ crystal. Using scanning transmission electron microscopy, we confirm that the easy axis of the magnetic anisotropy is aligned to the armchair direction of the WSe$_{2}$. Our results indicate a strong interplay between the ferromagnet and TMD, and unveil the nature of the spin-orbit torques in TMD-based devices. These findings open new avenues for possible methods for optimizing the torques and the interaction with interfaced magnets, important for future non-volatile magnetic devices for data processing and storage.
Current-induced spin-orbit torques (SOTs) represent one of the most effective ways to manipulate the magnetization in spintronic devices. The orthogonal torque-magnetization geometry, the strong damping, and the large domain wall velocities inherent to materials with strong spin-orbit coupling make SOTs especially appealing for fast switching applications in nonvolatile memory and logic units. So far, however, the timescale and evolution of the magnetization during the switching process have remained undetected. Here, we report the direct observation of SOT-driven magnetization dynamics in Pt/Co/AlO$_x$ dots during current pulse injection. Time-resolved x-ray images with 25 nm spatial and 100 ps temporal resolution reveal that switching is achieved within the duration of a sub-ns current pulse by the fast nucleation of an inverted domain at the edge of the dot and propagation of a tilted domain wall across the dot. The nucleation point is deterministic and alternates between the four dot quadrants depending on the sign of the magnetization, current, and external field. Our measurements reveal how the magnetic symmetry is broken by the concerted action of both damping-like and field-like SOT and show that reproducible switching events can be obtained for over $10^{12}$ reversal cycles.
We study the optically induced torques in thin film ferromagnetic layers under excitation by circularly polarized light. We study cases both with and without Rashba spin-orbit coupling using a 4-band model. In the absence of Rashba spin-orbit coupling, we derive an analytic expression for the optical torques, revealing the conditions under which the torque is mostly derived from optical spin transfer torque (i.e. when the torque is along the direction of optical angular momentum), versus when the torque is derived from the inverse Faraday effect (i.e. when the torque is perpendicular to the optical angular momentum). We find the optical spin transfer torque dominates provided that the excitation energy is far away from band edge transitions, and the magnetic exchange splitting is much greater than the lifetime broadening. For the case with large Rashba spin-orbit coupling and out-of-plane magnetization, we find the torque is generally perpendicular to the photon angular momentum and is ascribed to an optical Edelstein effect.