This letter describes a completely-integrable system of Yang-Mills-Higgs equations which generalizes the Hitchin equations on a Riemann surface to arbitrary k-dimensional complex manifolds. The system arises as a dimensional reduction of a set of integrable Yang-Mills equations in 4k real dimensions. Our integrable system implies other generalizations such as the Simpson equations and the non-abelian Seiberg-Witten equations. Some simple solutions in the k=2 case are described.
Self-dual Yang-Mills instantons on $R^4$ correspond to algebraic ADHM data. The ADHM equations for $S^1$-symmetric instantons give a one-dimensional integrable lattice system, which may be viewed as an discretization of the Nahm equations. In this note, we see that generalized ADHM data for $T^2$-symmetric instantons gives an integrable two-dimensional lattice system, which may be viewed as a discrete version of the Hitchin equations.
We investigate the evolutionary aspects of some integrable soliton models whose Lagrangians are derived from the pullback of a volume-form to a two-dimensional target space. These models are known to have infinitely many conserved quantities and support various types of exact analytic solutions with nontrivial topology. In particular, we show that, in spite of the fact that they admit nice smooth solutions, wave propagation about these solutions will always be ill-posed. This is related to the fact that the corresponding Euler-Lagrange equations are not of hyperbolic type.
We present an exact two-particle solution of the Currie-Hill equations of Predictive Relativistic Mechanics in $1 + 1$ dimensional Minkowski space. The instantaneous accelerations are given in terms of elementary functions depending on the relative particle position and velocities. The general solution of the equations of motion is given and by studying the global phase space of this system it is shown that this is a subspace of the full kinematic phase space.
In this paper we outline the construction of semiclassical eigenfunctions of integrable models in terms of the semiclassical path integral for the Poisson sigma model with the target space being the phase space of the integrable system. The semiclassical path integral is defined as a formal power series with coefficients being Feynman diagrams. We also argue that in a similar way one can obtain irreducible semiclassical representations of Kontsevichs star product.
We introduce the concept of multisymplectic formalism, familiar in covariant field theory, for the study of integrable defects in 1+1 classical field theory. The main idea is the coexistence of two Poisson brackets, one for each spacetime coordinate. The Poisson bracket corresponding to the time coordinate is the usual one describing the time evolution of the system. Taking the nonlinear Schrodinger (NLS) equation as an example, we introduce the new bracket associated to the space coordinate. We show that, in the absence of any defect, the two brackets yield completely equivalent Hamiltonian descriptions of the model. However, in the presence of a defect described by a frozen Backlund transformation, the advantage of using the new bracket becomes evident. It allows us to reinterpret the defect conditions as canonical transformations. As a consequence, we are also able to implement the method of the classical r matrix and to prove Liouville integrability of the system with such a defect. The use of the new Poisson bracket completely bypasses all the known problems associated with the presence of a defect in the discussion of Liouville integrability. A by-product of the approach is the reinterpretation of the defect Lagrangian used in the Lagrangian description of integrable defects as the generating function of the canonical transformation representing the defect conditions.