No Arabic abstract
We introduce the concept of multisymplectic formalism, familiar in covariant field theory, for the study of integrable defects in 1+1 classical field theory. The main idea is the coexistence of two Poisson brackets, one for each spacetime coordinate. The Poisson bracket corresponding to the time coordinate is the usual one describing the time evolution of the system. Taking the nonlinear Schrodinger (NLS) equation as an example, we introduce the new bracket associated to the space coordinate. We show that, in the absence of any defect, the two brackets yield completely equivalent Hamiltonian descriptions of the model. However, in the presence of a defect described by a frozen Backlund transformation, the advantage of using the new bracket becomes evident. It allows us to reinterpret the defect conditions as canonical transformations. As a consequence, we are also able to implement the method of the classical r matrix and to prove Liouville integrability of the system with such a defect. The use of the new Poisson bracket completely bypasses all the known problems associated with the presence of a defect in the discussion of Liouville integrability. A by-product of the approach is the reinterpretation of the defect Lagrangian used in the Lagrangian description of integrable defects as the generating function of the canonical transformation representing the defect conditions.
The transfer matrix in lattice field theory connects the covariant and the initial data frameworks; in spin foam models, it can be written as a composition of elementary cellular amplitudes/propagators. We present a framework for discrete spacetime classical field theory in which solutions to the field equations over elementary spacetime cells may be amalgamated if they satisfy simple gluing conditions matching the composition rules of cellular amplitudes in spin foam models. Furthermore, the formalism is endowed with a multisymplectic structure responsible for local conservation laws. Some models within our framework are effective theories modeling a system at a given scale. Our framework allows us to study coarse graining and the continuum limit.
A novel C*-algebraic framework is presented for relativistic quantum field theories, fixed by a Lagrangean. It combines the postulates of local quantum physics, encoded in the Haag-Kastler axioms, with insights gained in the perturbative approach to quantum field theory. Key ingredients are an appropriate version of Bogolubovs relative $S$-operators and a reformulation of the Schwinger-Dyson equations. These are used to define for any classical relativistic Lagrangean of a scalar field a non-trivial local net of C*-algebras, encoding the resulting interactions at the quantum level. The construction works in any number of space-time dimensions. It reduces the longstanding existence problem of interacting quantum field theories in physical spacetimeto the question of whether the C*-algebras so constructed admit suitable states, such as stable ground and equilibrium states. The method is illustrated on the example of a non-interacting field and it is shown how to pass from it within the algebra to interacting theories by relying on a rigorous local version of the interaction picture.
We present an explicit method to perform similarity reduction of a Riemann-Hilbert factorization problem for a homogeneous GL (N, C) loop group and use our results to find solutions to the Painleve VI equation for N=3. The tau function of the reduced hierarchy is shown to satisfy the sigma-form of the Painleve VI equation. A class of tau functions of the reduced integrable hierarchy is constructed by means of a Grassmannian formulation. These solutions provide rational solutions of the Painleve VI equation.
We consider classical gauge theory with spontaneous symmetry breaking on a principal bundle $Pto X$ whose structure group $G$ is reducible to a closed subgroup $H$, and sections of the quotient bundle $P/Hto X$ are treated as classical Higgs fields. In this theory, matter fields with an exact symmetry group $H$ are described by sections of a composite bundle $Yto P/Hto X$. We show that their gauge $G$-invariant Lagrangian necessarily factorizes through a vertical covariant differential on $Y$ defined by a principal connection on an $H$-principal bundle $Pto P/H$.
Higgs fields are attributes of classical gauge theory on a principal bundle $Pto X$ whose structure Lie group $G$ if is reducible to a closed subgroup $H$. They are represented by sections of the quotient bundle $P/Hto X$. A problem lies in description of matter fields with an exact symmetry group $H$. They are represented by sections of a composite bundle which is associated to an $H$-principal bundle $Pto P/H$. It is essential that they admit an action of a gauge group $G$.