Do you want to publish a course? Click here

Symmetric Instantons and Discrete Hitchin Equations

64   0   0.0 ( 0 )
 Added by R. S. Ward
 Publication date 2015
  fields Physics
and research's language is English
 Authors R. S. Ward




Ask ChatGPT about the research

Self-dual Yang-Mills instantons on $R^4$ correspond to algebraic ADHM data. The ADHM equations for $S^1$-symmetric instantons give a one-dimensional integrable lattice system, which may be viewed as an discretization of the Nahm equations. In this note, we see that generalized ADHM data for $T^2$-symmetric instantons gives an integrable two-dimensional lattice system, which may be viewed as a discrete version of the Hitchin equations.

rate research

Read More

151 - R. S. Ward 2016
This letter describes a completely-integrable system of Yang-Mills-Higgs equations which generalizes the Hitchin equations on a Riemann surface to arbitrary k-dimensional complex manifolds. The system arises as a dimensional reduction of a set of integrable Yang-Mills equations in 4k real dimensions. Our integrable system implies other generalizations such as the Simpson equations and the non-abelian Seiberg-Witten equations. Some simple solutions in the k=2 case are described.
We express discrete Painleve equations as discrete Hamiltonian systems. The discrete Hamiltonian systems here mean the canonical transformations defined by generating functions. Our construction relies on the classification of the discrete Painleve equations based on the surface-type. The discrete Hamiltonians we obtain are written in the logarithm and dilogarithm functions.
This paper is an addendum to earlier papers cite{R1,R2} in which it was shown that the unstable separatrix solutions for Painleve I and II are determined by $PT$-symmetric Hamiltonians. In this paper unstable separatrix solutions of the fourth Painleve transcendent are studied numerically and analytically. For a fixed initial value, say $y(0)=1$, a discrete set of initial slopes $y(0)=b_n$ give rise to separatrix solutions. Similarly, for a fixed initial slope, say $y(0)=0$, a discrete set of initial values $y(0)=c_n$ give rise to separatrix solutions. For Painleve IV the large-$n$ asymptotic behavior of $b_n$ is $b_nsim B_{rm IV}n^{3/4}$ and that of $c_n$ is $c_nsim C_{rm IV} n^{1/2}$. The constants $B_{rm IV}$ and $C_{rm IV}$ are determined both numerically and analytically. The analytical values of these constants are found by reducing the nonlinear Painleve IV equation to the linear eigenvalue equation for the sextic $PT$-symmetric Hamiltonian $H=frac{1}{2} p^2+frac{1}{8} x^6$.
We explore the connections between the theories of stochastic analysis and discrete quantum mechanical systems. Naturally these connections include the Feynman-Kac formula, and the Cameron-Martin-Girsanov theorem. More precisely, the notion of the quantum canonical transformation is employed for computing the time propagator, in the case of generic dynamical diffusion coefficients. Explicit computation of the path integral leads to a universal expression for the associated measure regardless of the form of the diffusion coefficient and the drift. This computation also reveals that the drift plays the role of a super potential in the usual super-symmetric quantum mechanics sense. Some simple illustrative examples such as the Ornstein-Uhlenbeck process and the multidimensional Black-Scholes model are also discussed. Basic examples of quantum integrable systems such as the quantum discrete non-linear hierarchy (DNLS) and the XXZ spin chain are presented providing specific connections between quantum (integrable) systems and stochastic differential equations (SDEs). The continuum limits of the SDEs for the first two members of the NLS hierarchy turn out to be the stochastic transport and the stochastic heat equations respectively. The quantum Darboux matrix for the discrete NLS is also computed as a defect matrix and the relevant SDEs are derived.
195 - R. S. Ward 2015
We study smooth SU(2) solutions of the Hitchin equations on R^2, with the determinant of the complex Higgs field being a polynomial of degree n. When n>=3, there are moduli spaces of solutions, in the sense that the natural L^2 metric is well-defined on a subset of the parameter space. We examine rotationally-symmetric solutions for n=1 and n=2, and then focus on the n=3 case, elucidating the moduli and describing the asymptotic geometry as well as the geometry of two totally-geodesic surfaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا