No Arabic abstract
We examine the HI-based star formation efficiency (SFE_HI), the ratio of star formation rate to the atomic Hydrogen (HI) mass, in the context of a constant stability star-forming disk model. Our observations of HI-selected galaxies show SFE to be fairly constant (log SFE_HI = -9.65 yr-1 with a dispersion of 0.3 dex) across ~5 orders of magnitude in stellar masses. We present a model to account for this result, whose main principle is that the gas within galaxies forms a uniform stability disk and that stars form within the molecular gas in this disk. We test t
The inner few hundred parsecs of the Milky Way harbours gas densities, pressures, velocity dispersions, an interstellar radiation field and a cosmic ray ionisation rate orders of magnitude higher than the disc; akin to the environment found in star-forming galaxies at high-redshift. Previous studies have shown that this region is forming stars at a rate per unit mass of dense gas which is at least an order of magnitude lower than in the disc, potentially violating theoretical predictions. We show that all observational star formation rate diagnostics - both direct counting of young stellar objects and integrated light measurements - are in agreement within a factor two, hence the low star formation rate is not the result of the systematic uncertainties that affect any one method. As these methods trace the star formation over different timescales, from $0.1 - 5$ Myr, we conclude that the star formation rate has been constant to within a factor of a few within this time period. We investigate the progression of star formation within gravitationally bound clouds on $sim$ parsec scales and find $1 - 4$ per cent of the cloud masses are converted into stars per free-fall time, consistent with a subset of the considered volumetric star formation models. However, discriminating between these models is obstructed by the current uncertainties on the input observables and, most importantly and urgently, by their dependence on ill-constrained free parameters. The lack of empirical constraints on these parameters therefore represents a key challenge in the further verification or falsification of current star formation theories.
The slope of the star formation rate/stellar mass relation (the SFR Main Sequence; ${rm SFR}-M_*$) is not quite unity: specific star formation rates $({rm SFR}/M_*)$ are weakly-but-significantly anti-correlated with $M_*$. Here we demonstrate that this trend may simply reflect the well-known increase in bulge mass-fractions -- portions of a galaxy not forming stars -- with $M_*$. Using a large set of bulge/disk decompositions and SFR estimates derived from the Sloan Digital Sky Survey, we show that re-normalizing SFR by disk stellar mass $({rm sSFR_{rm disk}equiv SFR}/M_{*,{rm disk}})$ reduces the $M_*$-dependence of SF efficiency by $sim0.25$ dex per dex, erasing it entirely in some subsamples. Quantitatively, we find $log {rm sSFR_{disk}}-log M_*$ to have a slope $beta_{rm disk}in[-0.20,0.00]pm0.02$ (depending on SFR estimator and Main Sequence definition) for star-forming galaxies with $M_*geq10^{10}M_{odot}$ and bulge mass-fractions $B/Tlesssim0.6$, generally consistent with a pure-disk control sample ($beta_{rm control}=-0.05pm0.04$). That $langle{rm SFR}/M_{*,{rm disk}}rangle$ is (largely) independent of host mass for star-forming disks has strong implications for aspects of galaxy evolution inferred from any ${rm SFR}-M_*$ relation, including: manifestations of mass quenching (bulge growth), factors shaping the star-forming stellar mass function (uniform $dlog M_*/dt$ for low-mass, disk-dominated galaxies), and diversity in star formation histories (dispersion in ${rm SFR}(M_*,t)$). Our results emphasize the need to treat galaxies as composite systems -- not integrated masses -- in observational and theoretical work.
The star formation in molecular clouds is inefficient. The ionizing EUV radiation ($h u geq 13.6$ eV) from young clusters has been considered as a primary feedback effect to limit the star formation efficiency (SFE). We here focus on effects of the stellar FUV radiation (6 eV $leq h u leq$ 13.6 eV) during the cloud disruption stage. The FUV radiation may further reduce the SFE via photoelectric heating, and it also affects the chemical states of the gas that is not converted to stars (cloud remnants) via photodissociation of molecules. We have developed a one-dimensional semi-analytic model which follows the evolution of both the thermal and chemical structure of a photodissociation region (PDR) during the dynamical expansion of an HII region. We investigate how the FUV feedback limits the SFE, supposing that the star formation is quenched in the PDR where the temperature is above a threshold value (e.g., 100K). Our model predicts that the FUV feedback contributes to reduce the SFEs for the massive ($M_{rm cl} gtrsim 10^5 M_{odot}$) clouds with the low surface densities ($Sigma_{rm cl} lesssim 100$ M$_{odot}$pc$^{-2}$). Moreover, we show that a large part of the H$_2$ molecular gas contained in the cloud remnants should be CO-dark under the FUV feedback for a wide range of cloud properties. Therefore, the dispersed molecular clouds are potential factories of the CO-dark gas, which returns into the cycle of the interstellar medium.
Observations find a median star formation efficiency per free-fall time in Milky Way Giant Molecular Clouds (GMCs) on the order of $epsilon_{rm ff}sim 1%$ with dispersions of $sim0.5,{rm dex}$. The origin of this scatter in $epsilon_{rm ff}$ is still debated and difficult to reproduce with analytical models. We track the formation, evolution and destruction of GMCs in a hydrodynamical simulation of a Milky Way-like galaxy and by deriving cloud properties in an observationally motivated way, measure the distribution of star formation efficiencies which are in excellent agreement with observations. We find no significant link between $epsilon_{rm ff}$ and any measured global property of GMCs (e.g. gas mass, velocity dispersion). Instead, a wide range of efficiencies exist in the entire parameter space. From the cloud evolutionary tracks, we find that each cloud follow a emph{unique} evolutionary path which gives rise to wide diversity in all properties. We argue that it is this diversity in cloud properties, above all else, that results in the dispersion of $epsilon_{rm ff}$.
We present radiation-magneto-hydrodynamic simulations of star formation in self-gravitating, turbulent molecular clouds, modeling the formation of individual massive stars, including their UV radiation feedback. The set of simulations have cloud masses between $m_{rm gas}=10^3$~M$_odot$ to $3 times 10^5$~M$_odot$ and gas densities typical of clouds in the local universe ($overline n_{rm gas} sim 1.8times 10^2$~cm$^{-3}$) and 10$times$ and 100$times$ denser, expected to exist in high-redshift galaxies. The main results are: {it i}) The observed Salpeter power-law slope and normalisation of the stellar initial mass function at the high-mass end can be reproduced if we assume that each star-forming gas clump (sink particle) fragments into stars producing on average a maximum stellar mass about $40%$ of the mass of the sink particle, while the remaining $60%$ is distributed into smaller mass stars. Assuming that the sinks fragment according to a power-law mass function flatter than Salpeter, with log-slope $0.8$, satisfy this empirical prescription. {it ii}) The star formation law that best describes our set of simulation is $drho_*/dt propto rho_{gas}^{1.5}$ if $overline n_{gas}<n_{cri}approx 10^3$~cm$^{-3}$, and $drho_*/dt propto rho_{rm gas}^{2.5}$ otherwise. The duration of the star formation episode is roughly $6$ clouds sound crossing times (with $c_s=10$~km/s). {it iii}) The total star formation efficiency in the cloud is $f_*=2% (m_{rm gas}/10^4~M_odot)^{0.4}(1+overline n_{rm gas}/n_{rm cri})^{0.91}$, for gas at solar metallicity, while for metallicity $Z<0.1$~Z$_odot$, based on our limited sample, $f_*$ is reduced by a factor of $sim 5$. {it iv)} The most compact and massive clouds appear to form globular cluster progenitors, in the sense that star clusters remain gravitationally bound after the gas has been expelled.