No Arabic abstract
The slope of the star formation rate/stellar mass relation (the SFR Main Sequence; ${rm SFR}-M_*$) is not quite unity: specific star formation rates $({rm SFR}/M_*)$ are weakly-but-significantly anti-correlated with $M_*$. Here we demonstrate that this trend may simply reflect the well-known increase in bulge mass-fractions -- portions of a galaxy not forming stars -- with $M_*$. Using a large set of bulge/disk decompositions and SFR estimates derived from the Sloan Digital Sky Survey, we show that re-normalizing SFR by disk stellar mass $({rm sSFR_{rm disk}equiv SFR}/M_{*,{rm disk}})$ reduces the $M_*$-dependence of SF efficiency by $sim0.25$ dex per dex, erasing it entirely in some subsamples. Quantitatively, we find $log {rm sSFR_{disk}}-log M_*$ to have a slope $beta_{rm disk}in[-0.20,0.00]pm0.02$ (depending on SFR estimator and Main Sequence definition) for star-forming galaxies with $M_*geq10^{10}M_{odot}$ and bulge mass-fractions $B/Tlesssim0.6$, generally consistent with a pure-disk control sample ($beta_{rm control}=-0.05pm0.04$). That $langle{rm SFR}/M_{*,{rm disk}}rangle$ is (largely) independent of host mass for star-forming disks has strong implications for aspects of galaxy evolution inferred from any ${rm SFR}-M_*$ relation, including: manifestations of mass quenching (bulge growth), factors shaping the star-forming stellar mass function (uniform $dlog M_*/dt$ for low-mass, disk-dominated galaxies), and diversity in star formation histories (dispersion in ${rm SFR}(M_*,t)$). Our results emphasize the need to treat galaxies as composite systems -- not integrated masses -- in observational and theoretical work.
We investigate the location of an ultra-hard X-ray selected sample of AGN from the Swift Burst Alert Telescope (BAT) catalog with respect to the main sequence (MS) of star-forming galaxies using Herschel-based measurements of the star formation rate (SFR) and stellar mass (mstar) from Sloan Digital Sky Survey (SDSS) photometry where the AGN contribution has been carefully removed. We construct the MS with galaxies from the Herschel Reference Survey and Herschel Stripe 82 Survey using the exact same methods to measure the SFR and mstar{} as the Swift/BAT AGN. We find a large fraction of the Swift/BAT AGN lie below the MS indicating decreased specific SFR (sSFR) compared to non-AGN galaxies. The Swift/BAT AGN are then compared to a high-mass galaxy sample (COLD GASS), where we find a similarity between the AGN in COLD GASS and the Swift/BAT AGN. Both samples of AGN lie firmly between star-forming galaxies on the MS and quiescent galaxies far below the MS. However, we find no relationship between the X-ray luminosity and distance from the MS. While the morphological distribution of the BAT AGN is more similar to star-forming galaxies, the sSFR of each morphology is more similar to the COLD GASS AGN. The merger fraction in the BAT AGN is much higher than the COLD GASS AGN and star-forming galaxies and is related to distance from the MS. These results support a model in which bright AGN tend to be in high mass star-forming galaxies in the process of quenching which eventually starves the supermassive black hole itself.
The inner few hundred parsecs of the Milky Way harbours gas densities, pressures, velocity dispersions, an interstellar radiation field and a cosmic ray ionisation rate orders of magnitude higher than the disc; akin to the environment found in star-forming galaxies at high-redshift. Previous studies have shown that this region is forming stars at a rate per unit mass of dense gas which is at least an order of magnitude lower than in the disc, potentially violating theoretical predictions. We show that all observational star formation rate diagnostics - both direct counting of young stellar objects and integrated light measurements - are in agreement within a factor two, hence the low star formation rate is not the result of the systematic uncertainties that affect any one method. As these methods trace the star formation over different timescales, from $0.1 - 5$ Myr, we conclude that the star formation rate has been constant to within a factor of a few within this time period. We investigate the progression of star formation within gravitationally bound clouds on $sim$ parsec scales and find $1 - 4$ per cent of the cloud masses are converted into stars per free-fall time, consistent with a subset of the considered volumetric star formation models. However, discriminating between these models is obstructed by the current uncertainties on the input observables and, most importantly and urgently, by their dependence on ill-constrained free parameters. The lack of empirical constraints on these parameters therefore represents a key challenge in the further verification or falsification of current star formation theories.
Recent observations have revealed massive galactic molecular outflows that may have physical conditions (high gas densities) required to form stars. Indeed, several recent models predict that such massive galactic outflows may ignite star formation within the outflow itself. This star-formation mode, in which stars form with high radial velocities, could contribute to the morphological evolution of galaxies, to the evolution in size and velocity dispersion of the spheroidal component of galaxies, and would contribute to the population of high-velocity stars, which could even escape the galaxy. Such star formation could provide in-situ chemical enrichment of the circumgalactic and intergalactic medium (through supernova explosions of young stars on large orbits), and some models also predict that it may contribute substantially to the global star formation rate observed in distant galaxies. Although there exists observational evidence for star formation triggered by outflows or jets into their host galaxy, as a consequence of gas compression, evidence for star formation occurring within galactic outflows is still missing. Here we report new spectroscopic observations that unambiguously reveal star formation occurring in a galactic outflow at a redshift of 0.0448. The inferred star formation rate in the outflow is larger than 15 Msun/yr. Star formation may also be occurring in other galactic outflows, but may have been missed by previous observations owing to the lack of adequate diagnostics.
It has been suggested that the high metallicity generally observed in active galactic nuclei (AGNs) and quasars originates from ongoing star formation in the self-gravitating part of accretion disks around the supermassive black holes. We designate this region as the star forming (SF) disk, in which metals are produced from supernova explosions (SNexp) while at the same time inflows are driven by SNexp-excited turbulent viscosity to accrete onto the SMBHs. In this paper, an equation of metallicity governed by SNexp and radial advection is established to describe the metal distribution and evolution in the SF disk. We find that the metal abundance is enriched at different rates at different positions in the disk, and that a metallicity gradient is set up that evolves for steady-state AGNs. Metallicity as an integrated physical parameter can be used as a probe of the SF disk age during one episode of SMBH activity. In the SF disk, evaporation of molecular clouds heated by SNexp blast waves unavoidably forms hot gas. This heating is eventually balanced by the cooling of the hot gas, but we show that the hot gas will escape from the SF disk before being cooled, and diffuse into the BLRs forming with a typical rate of $sim 1sunmyr$. The diffusion of hot gas from a SF disk depends on ongoing star formation, leading to the metallicity gradients in BLR observed in AGNs. We discuss this and other observable consequences of this scenario.
We study the star formation (SF) law in 12 Galactic molecular clouds with ongoing high-mass star formation (HMSF) activity, as traced by the presence of a bright IRAS source and other HMSF tracers. We define the molecular cloud (MC) associated to each IRAS source using 13CO line emission, and count the young stellar objects (YSOs) within these clouds using GLIMPSE and MIPSGAL 24 micron Spitzer databases.The masses for high luminosity YSOs (Lbol>10~Lsun) are determined individually using Pre Main Sequence evolutionary tracks and the evolutionary stages of the sources, whereas a mean mass of 0.5 Msun was adopted to determine the masses in the low luminosity YSO population. The star formation rate surface density (sigsfr) corresponding to a gas surface density (siggas) in each MC is obtained by counting the number of the YSOs within successive contours of 13CO line emission. We find a break in the relation between sigsfr and siggas, with the relation being power-law (sigsfr ~ siggas^N) with the index N varying between 1.4 and 3.6 above the break. The siggas at the break is between 150-360 Msun/pc^2 for the sample clouds, which compares well with the threshold gas density found in recent studies of Galactic star-forming regions. Our clouds treated as a whole lie between the Kennicutt (1998) relation and the linear relation for Galactic and extra-galactic dense star-forming regions. We find a tendency for the high-mass YSOs to be found preferentially in dense regions at densities higher than 1200 Msun/pc^2 (~0.25 g/cm^2).