No Arabic abstract
Impurities, which are inherently present in any real material, may play an important role in the magnetism of frustrated spin systems with spin-liquid ground states. We address the impurity issue in quantum kagome antiferromagnets by investigating ZnCu$_3$(OH)$_6$SO$_4$ (Zn-brochantite) by means of muon spin spectroscopy. We show that muons couple to the impurity magnetism, originating from Cu-Zn intersite disorder, and that the impurities are highly correlated with the kagome spins, allowing us to probe the intrinsic kagome physics via a Kondo-like effect. The low-temperature plateau in local susceptibility identifies the spin-liquid ground state as being gapless. The corresponding spin fluctuations exhibit an unconventional spectral density and an intriguing field dependence.
The layered compound with distorted Kagome nets, Dy3Ru4Al12, was previously reported to undergo antiferromagnetic ordering below (TN=) 7 K, based on investigations on single crystals. Here, we report the results of our investigation of ac and dc magnetic susceptibility (c{hi}), isothermal remnant magnetization (MIRM), heat-capacity, magnetocaloric effect and magnetoresistance measurements on polycrystals. The present results reveal that there is an additional magnetic anomaly around 20 K, as though the Neel order is preceded by the formation of ferromagnetic clusters. We attribute this feature to geometric frustration of magnetism. In view of the existence of this phase, the interpretation of the linear-term in the heat-capacity in terms of spin-fluctuations from the Ru 4d band needs to be revisited. Additionally, in the vicinity of TN, AC c{hi} shows a prominent frequency dependence and, below TN, MIRM exhibits a slow decay with time. This raises a question whether the antiferromagnetic structure in this compound is characterized by spin-glass-like dynamics. In contrast to what was reported earlier, there is a change in the sign of the magnetoresistance (MR) at the metamagnetic transition. A butter-fly-shaped (isothermal) MR loop (interestingly spanning over all the four quadrants) is observed at 2 K with distinct evidence for the magnetic phase co-existence phenomenon in zero field after travelling through metamagnetic transition field. The results on polycrystals thus provide additional information about the magnetism of this compound, revealing that the magnetism of this compound is more complex than what is believed, due to geometric frustration intrinsic to Kagome net.
We report magnetization and neutron scattering measurements down to 60 mK on a new family of Fe based kagome antiferromagnets, in which a strong local spin anisotropy combined with a low exchange path network connectivity lead to domain walls intersecting the kagome planes through strings of free spins. These produce unfamiliar slow spin dynamics in the ordered phase, evolving from exchange-released spin-flips towards a cooperative behavior on decreasing the temperature, probably due to the onset of long-range dipolar interaction. A domain structure of independent magnetic grains is obtained that could be generic to other frustrated magnets.
Motivated by a recent experiment on volborthite, a typical spin-$1/2$ antiferromagnet with a kagom{e} lattice structure, we study the magnetization process of a classical Heisenberg model on a spatially distorted kagom{e} lattice using the Monte Carlo (MC) method. We find a distortion-induced magnetization step at low temperatures and low magnetic fields. The magnitude of this step is given by $Delta m_z=left|1-alpharight|/3alpha$ at zero temperature, where $alpha$ denotes the spatial anisotropy in exchange constants. The magnetization step signals a first-order transition at low temperatures, between two phases distinguished by distinct and well-developed short-range spin correlations, one characterized by spin alignment of a local $120^{circ}$ structure with a $sqrt{3}timessqrt{3}$ period, and the other by a partially spin-flopped structure. We point out the relevance of our results to the unconventional steps observed in volborthite.
We discuss the ground-state degeneracy of spin-$1/2$ kagome-lattice quantum antiferromagnets on magnetization plateaus by employing two complementary methods: the adiabatic flux insertion in closed boundary conditions and a t Hooft anomaly argument on inherent symmetries in a quasi-one-dimensional limit. The flux insertion with a tilted boundary condition restricts the lower bound of the ground-state degeneracy on $1/9$, $1/3$, $5/9$, and $7/9$ magnetization plateaus under the $mathrm{U(1)}$ spin-rotation and the translation symmetries: $3$, $1$, $3$, and $3$, respectively. This result motivates us further to develop an anomaly interpretation of the $1/3$ plateau. Taking advantage of the insensitivity of anomalies to spatial anisotropies, we examine the existence of the unique gapped ground state on the $1/3$ plateau from a quasi-one-dimensional viewpoint. In the quasi-one-dimensional limit, kagome antiferromagnets are reduced to weakly coupled three-leg spin tubes. Here, we point out the following anomaly description of the $1/3$ plateau. While a simple $S=1/2$ three-leg spin tube cannot have the unique gapped ground state on the $1/3$ plateau because of an anomaly between a $mathbb Z_3times mathbb Z_3$ symmetry and the translation symmetry at the $1/3$ filling, the kagome antiferromagnet breaks explicitly one of the $mathbb Z_3$ symmetries related to a $mathbb Z_3$ cyclic transformation of spins in the unit cell. Hence the kagome antiferromagnet can have the unique gapped ground state on the $1/3$ plateau.
We report $^{51}$V NMR, $mu$SR and zero applied field $^{63,65}$Cu NMR measurements on powder samples of Sr-vesignieite, SrCu$_3$V$_2$O$_8$(OH)$_2$, a $S = 1/2$ nearly-kagome Heisenberg antiferromagnet. Our results demonstrate that the ground state is a $mathbf{q} = 0$ magnetic structure with spins canting either in or out of the kagome plane, giving rise to weak ferromagnetism. We determine the size of ordered moments and the angle of canting for different possible $mathbf{q} = 0$ structures and orbital scenarios, thereby providing insight into the role of the Dzyaloshinskii-Moriya (DM) interaction in this material.