Do you want to publish a course? Click here

Magnetization Step in Spatially Distorted Heisenberg Kagome Antiferromagnets

153   0   0.0 ( 0 )
 Added by Ryui Kaneko
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by a recent experiment on volborthite, a typical spin-$1/2$ antiferromagnet with a kagom{e} lattice structure, we study the magnetization process of a classical Heisenberg model on a spatially distorted kagom{e} lattice using the Monte Carlo (MC) method. We find a distortion-induced magnetization step at low temperatures and low magnetic fields. The magnitude of this step is given by $Delta m_z=left|1-alpharight|/3alpha$ at zero temperature, where $alpha$ denotes the spatial anisotropy in exchange constants. The magnetization step signals a first-order transition at low temperatures, between two phases distinguished by distinct and well-developed short-range spin correlations, one characterized by spin alignment of a local $120^{circ}$ structure with a $sqrt{3}timessqrt{3}$ period, and the other by a partially spin-flopped structure. We point out the relevance of our results to the unconventional steps observed in volborthite.



rate research

Read More

In the search for spin-1/2 kagome antiferromagnets, the mineral volborthite has recently been the subject of experimental studies [Hiroi et al.,2001]. It has been suggested that the magnetic properties of this material are described by a spin-1/2 Heisenberg model on the kagome lattice with spatially anisotropic exchange couplings. We report on investigations of the Sp(N) symmetric generalisation of this model in the large N limit. We obtain a detailed description of the dependence of possible ground states on the anisotropy and on the spin length S. A fairly rich phase diagram with a ferrimagnetic phase, incommensurate phases with and without long range order and a decoupled chain phase emerges.
We discuss the ground-state degeneracy of spin-$1/2$ kagome-lattice quantum antiferromagnets on magnetization plateaus by employing two complementary methods: the adiabatic flux insertion in closed boundary conditions and a t Hooft anomaly argument on inherent symmetries in a quasi-one-dimensional limit. The flux insertion with a tilted boundary condition restricts the lower bound of the ground-state degeneracy on $1/9$, $1/3$, $5/9$, and $7/9$ magnetization plateaus under the $mathrm{U(1)}$ spin-rotation and the translation symmetries: $3$, $1$, $3$, and $3$, respectively. This result motivates us further to develop an anomaly interpretation of the $1/3$ plateau. Taking advantage of the insensitivity of anomalies to spatial anisotropies, we examine the existence of the unique gapped ground state on the $1/3$ plateau from a quasi-one-dimensional viewpoint. In the quasi-one-dimensional limit, kagome antiferromagnets are reduced to weakly coupled three-leg spin tubes. Here, we point out the following anomaly description of the $1/3$ plateau. While a simple $S=1/2$ three-leg spin tube cannot have the unique gapped ground state on the $1/3$ plateau because of an anomaly between a $mathbb Z_3times mathbb Z_3$ symmetry and the translation symmetry at the $1/3$ filling, the kagome antiferromagnet breaks explicitly one of the $mathbb Z_3$ symmetries related to a $mathbb Z_3$ cyclic transformation of spins in the unit cell. Hence the kagome antiferromagnet can have the unique gapped ground state on the $1/3$ plateau.
We clarify the existence of several magnetization plateaux for the kagome $S=1/2$ antiferromagnetic Heisenberg model in a magnetic field. Using approximate or exact localized magnon eigenstates, we are able to describe in a similar manner the plateau states that occur for magnetization per site $m=1/3$, $5/9$, and $7/9$ of the saturation value. These results are confirmed using large-scale Exact Diagonalization on lattices up to 63 sites.
We report magnetization and neutron scattering measurements down to 60 mK on a new family of Fe based kagome antiferromagnets, in which a strong local spin anisotropy combined with a low exchange path network connectivity lead to domain walls intersecting the kagome planes through strings of free spins. These produce unfamiliar slow spin dynamics in the ordered phase, evolving from exchange-released spin-flips towards a cooperative behavior on decreasing the temperature, probably due to the onset of long-range dipolar interaction. A domain structure of independent magnetic grains is obtained that could be generic to other frustrated magnets.
We present results of ferromagnetic resonance (FMR) experiments and micromagnetic simulations for a distorted, 2D Kagome artificial spin ice. The distorted structure is created by continuously modulating the 2D primitive lattice translation vectors of a periodic honeycomb lattice, according to an aperiodic Fibonacci sequence used to generate 1D quasicrystals. Experimental data and micromagnetic simulations show the Fibonacci distortion causes broadening and splitting of FMR modes into multiple branches, which accompany the increasing number of segment lengths and orientations that develop with increasing distortion. When the applied field is increased in the opposite direction to the net magnetization of a segment, spin wave modes appear, disappear or suddenly shift, to signal segment magnetization reversal events. These results show the complex behavior of reversal events, as well as well-defined frequencies and frequency-field slopes of FMR modes, can be precisely tuned by varying the severity of the aperiodic lattice distortion. This type of distorted structure could therefore provide a new tool for the design of complicated magnonic systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا