No Arabic abstract
Increases in atmospheric CO2 and CH4 result from a combination of forcing from anthropogenic emissions and Earth System feedbacks that reduce or amplify the effects of those emissions on atmospheric concentrations. Despite decades of research carbon-climate feedbacks remain poorly quantified. The impact of these uncertainties on future climate are of increasing concern, especially in the wake of recent climate negotiations. Emissions, long concentrated in the developed world, are now shifting to developing countries, where the emissions inventories have larger uncertainties. The fraction of anthropogenic CO2 remaining in the atmosphere has remained remarkably constant over the last 50 years. Will this change in the future as the climate evolves? Concentrations of CH4, the 2nd most important greenhouse gas, which had apparently stabilized, have recently resumed their increase, but the exact cause for this is unknown. While greenhouse gases affect the global atmosphere, their sources and sinks are remarkably heterogeneous in time and space, and traditional in situ observing systems do not provide the coverage and resolution to attribute the changes to these greenhouse gases to specific sources or sinks. In the past few years, space-based technologies have shown promise for monitoring carbon stocks and fluxes. Advanc
Though the Boltzmann-Gibbs framework of equilibrium statistical mechanics has been successful in many arenas, it is clearly inadequate for describing many interesting natural phenomena driven far from equilibrium. The simplest step towards that goal is a better understanding of nonequilibrium steady-states (NESS). Here we focus on one of the distinctive features of NESS, persistent probability currents, and their manifestations in our climate system. We consider the natural variability of the steady-state climate system, which can be approximated as a NESS. These currents must form closed loops, which are odd under time reversal, providing the crucial difference between systems in thermal equilibrium and NESS. Seeking manifestations of such current loops leads us naturally to the notion of probability angular momentum and oscillations in the space of observables. Specifically, we will relate this concept to the asymmetric part of certain time-dependent correlation functions. Applying this approach, we propose that these current loops give rise to preferred spatio-temporal patterns of natural climate variability that take the form of climate oscillations such as the El-Ni~{n}o Southern Oscillation (ENSO) and the Madden-Julien Oscillation (MJO). In the space of climate indices, we observe persistent currents and define a new diagnostic for these currents: the probability angular momentum. Using the observed climatic time series of ENSO and MJO, we compute both the averages and the distributions of the probability angular momentum. These results are in good agreement with the analysis from a linear Gaussian model. We propose that, in addition to being a new quantification of climate oscillations across models and observations, the probability angular momentum provides a meaningful characterization for all statistical systems in NESS.
Integrated assessment models (IAMs) are valuable tools that consider the interactions between socioeconomic systems and the climate system. Decision-makers and policy analysts employ IAMs to calculate the marginalized monetary cost of climate damages resulting from an incremental emission of a greenhouse gas. Used within the context of regulating anthropogenic methane emissions, this metric is called the social cost of methane (SC-CH$_4$). Because several key IAMs used for social cost estimation contain a simplified model structure that prevents the endogenous modeling of non-CO$_2$ greenhouse gases, very few estimates of the SC-CH$_4$ exist. For this reason, IAMs should be updated to better represent methane cycle dynamics that are consistent with comprehensive Earth System Models. We include feedbacks of climate change on the methane cycle to estimate the SC-CH$_4$. Our expected value for the SC-CH$_4$ is $1163/t-CH$_4$ under a constant 3.0% discount rate. This represents a 44% increase relative to a mean estimate without feedbacks on the methane cycle.
There is ongoing interest in the global entropy production rate as a climate diagnostic and predictor, but progress has been limited by ambiguities in its definition; different conceptual boundaries of the climate system give rise to different internal production rates. Three viable options are described, estimated and investigated here, two of which -- the material and the total radiative (here planetary) entropy production rates -- are well-established and a third which has only recently been considered but appears very promising. This new option is labelled the transfer entropy production rate and includes all irreversible processes that transfer heat within the climate, radiative and material, but not those involved in the exchange of radiation with space. Estimates in three model climates put the material rate in the range $27$-$48$ mW/m$^2$K, the transfer rate $67$-$76$ mW/m$^2$K, and the planetary rate $1279$-$1312$ mW/m$^2$K. The climate-relevance of each rate is probed by calculating their responses to climate changes in a simple radiative-convective model. An increased greenhouse effect causes a significant increase in the material and transfer entropy production rates but has no direct impact on the planetary rate. When the same surface temperature increase is forced by changing the albedo instead, the material and transfer entropy production rates increase less dramatically and the planetary rate also registers an increase. This is pertinent to solar radiation management as it demonstrates the difficulty of reversing greenhouse gas-mediated climate changes by albedo alterations. It is argued that the transfer perspective has particular significance in the climate system and warrants increased prominence.
This article discussesl a few of the problems that arise in geophysical fluid dynamics and climate that are associated with the presence of moisture in the air, its condensation and release of latent heat. Our main focus is Earths atmosphere but we also discuss how these problems might manifest themselves on other planetary bodies, with particular attention to Titan where methane takes on the role of water. GFD has traditionally been concerned with understanding the very basic problems that lie at the foundation of dynamical meteorology and ocean-ography. Conventionally, and a little ironically, the subject mainly considers `dry fluids, meaning it does not concern itself overly much with phase changes. The subject is often regarded as dry in another way, because it does not consider problems perceived as relevant to the real world, such as clouds or rainfall, which have typically been the province of complicated numerical models. Those models often rely on parameterizations of unresolved processes, parameterizations that may work very well but that often have a semi-empirical basis. The consequent dichotomy between the foundations and the applications prevents progress being made that has both a secure basis in scientific understanding and a relevance to the Earths climate, especially where moisture is concerned. The dichotomy also inhibits progress in understanding the climate of other planets, where observations are insufficient to tune the parameterizations that weather and climate models for Earth rely upon, and a more fundamental approach is called for. Here we discuss four diverse examples of the problems with moisture: the determination of relative humidity and cloudiness; the transport of water vapor and its possible change under global warming; the moist shallow water equations and the Madden-Julian Oscillation; and the hydrology cycle on other planetary bodies.
Assessments of impacts of climate change and future projections over the Indian region, have so far relied on a single regional climate model (RCM) - eg., the PRECIS RCM of the Hadley Centre, UK. While these assessments have provided inputs to various reports (e.g., INCCA 2010; NATCOMM2 2012), it is important to have an ensemble of climate projections drawn from multiple RCMs due to large uncertainties in regional-scale climate projections. Ensembles of multi-RCM projections driven under different perceivable socio-economic scenarios are required to capture the probable path of growth, and provide the behavior of future climate and impacts on various biophysical systems and economic sectors dependent on such systems. The Centre for Climate Change Research, Indian Institute of Tropical Meteorology (CCCR-IITM) has generated an ensemble of high resolution downscaled projections of regional climate and monsoon over South Asia until 2100 for the Intergovernmental Panel for Climate Change (IPCC)using a RCM (ICTP-RegCM4) at 50 km horizontal resolution, by driving the regional model with lateral and lower boundary conditions from multiple global atmosphere-ocean coupled models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The future projections are based on three Representation Concentration Pathway (RCP) scenarios (viz., RCP2.6, RCP4.5, RCP8.5) of the IPCC.