Do you want to publish a course? Click here

Giant anisotropic magnetoresistance in Ising superconductor-magnetic insulator tunnel junctions

111   0   0.0 ( 0 )
 Added by Kaifei Kang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Superconductivity and magnetism are generally incompatible because of the opposing requirement on electron spin alignment. When combined, they produce a multitude of fascinating phenomena, including unconventional superconductivity and topological superconductivity. The emergence of two-dimensional (2D)layered superconducting and magnetic materials that can form nanoscale junctions with atomically sharp interfaces presents an ideal laboratory to explore new phenomena from coexisting superconductivity and magnetic ordering. Here we report tunneling spectroscopy under an in-plane magnetic field of superconductor-ferromagnet-superconductor (S/F/S) tunnel junctions that are made of 2D Ising superconductor NbSe2 and ferromagnetic insulator CrBr3. We observe nearly 100% tunneling anisotropic magnetoresistance (AMR), that is, difference in tunnel resistance upon changing magnetization direction from out-of-plane to inplane. The giant tunneling AMR is induced by superconductivity, particularly, a result of interfacial magnetic exchange coupling and spin-dependent quasiparticle scattering. We also observe an intriguing magnetic hysteresis effect in superconducting gap energy and quasiparticle scattering rate with a critical temperature that is 2 K below the superconducting transition temperature. Our study paves the path for exploring superconducting spintronic and unconventional superconductivity in van der Waals heterostructures.



rate research

Read More

The effects of the spin-orbit interaction on the tunneling magnetoresistance of ferromagnet/semiconductor/normal metal tunnel junctions are investigated. Analytical expressions for the tunneling anisotropic magnetoresistance (TAMR) are derived within an approximation in which the dependence of the magnetoresistance on the magnetization orientation in the ferromagnet originates from the interference between Bychkov-Rashba and Dresselhaus spin-orbit couplings that appear at junction interfaces and in the tunneling region. We also investigate the transport properties of ferromagnet/semiconductor/ferromagnet tunnel junctions and show that in such structures the spin-orbit interaction leads not only to the TAMR effect but also to the anisotropy of the conventional tunneling magnetoresistance (TMR). The resulting anisotropic tunneling magnetoresistance (ATMR) depends on the absolute magnetization directions in the ferromagnets. Within the proposed model, depending on the magnetization directions in the ferromagnets, the interplay of Bychkov-Rashba and Dresselhaus spin-orbit couplings produces differences between the rates of transmitted and reflected spins at the ferromagnet/seminconductor interfaces, which results in an anisotropic local density of states at the Fermi surface and in the TAMR and ATMR effects. Model calculations for Fe/GaAs/Fe tunnel junctions are presented. Furthermore, based on rather general symmetry considerations, we deduce the form of the magnetoresistance dependence on the absolute orientations of the magnetizations in the ferromagnets.
While the effects of lattice mismatch-induced strain, mechanical strain, as well as the intrinsic strain of thin films are sometimes detrimental, resulting in mechanical deformation and failure, strain can also be usefully harnessed for applications such as data storage, transistors, solar cells, and strain gauges, among other things. Here, we demonstrate that quantum transport across magnetic tunnel junctions (MTJs) can be significantly affected by the introduction of controllable mechanical strain, achieving an enhancement factor of ~2 in the experimental tunneling magnetoresistance (TMR) ratio. We further correlate this strain-enhanced TMR with coherent spin tunneling through the MgO barrier. Moreover, the strain-enhanced TMR is analyzed using non-equilibrium Greens function (NEGF) quantum transport calculations. Our results help elucidate the TMR mechanism at the atomic level and can provide a new way to enhance, as well as tune, the quantum properties in nanoscale materials and devices.
Thermoelectric effects result from the coupling of charge and heat transport, and can be used for thermometry, cooling and harvesting of thermal energy. The microscopic origin of thermoelectric effects is a broken electron-hole symmetry, which is usually quite small in metal structures, and vanishes at low temperatures. We report on a combined experimental and theoretical investigation of thermoelectric effects in superconductor/ferromagnet hybrid structures. We investigate the depencence of thermoelectric currents on the thermal excitation, as well as on the presence of a dc bias voltage across the junction. Large thermoelectric effects are observed in superconductor/ferromagnet and superconductor/normal-metal hybrid structures. The spin-independent signals observed under finite voltage bias are shown to be reciprocal to the physics of superconductor/normal-metal microrefrigerators. The spin-dependent thermoelectric signals in the linear regime are due to the coupling of spin and heat transport, and can be used to design more efficient refrigerators
We demonstrate both theoretically and experimentally two limiting factors in cooling electrons using biased tunnel junctions to extract heat from a normal metal into a superconductor. Firstly, when the injection rate of electrons exceeds the internal relaxation rate in the metal to be cooled, the electrons do no more obey the Fermi-Dirac distribution, and the concept of temperature cannot be applied as such. Secondly, at low bath temperatures, states within the gap induce anomalous heating and yield a theoretical limit of the achievable minimum temperature.
Thermoelectric effects in magnetic nanostructures and the so-called spin caloritronics are attracting much interest. Indeed it provides a new way to control and manipulate spin currents which are key elements of spin-based electronics. Here we report on giant magnetothermoelectric effect in Al2O3 magnetic tunnel junctions. The thermovoltage in this geometry can reach 1 mV. Moreover a magneto-thermovoltage effect could be measured with ratio similar to the tunnel magnetoresistance ratio. The Seebeck coefficient can then be tuned by changing the relative magnetization orientation of the two magnetic layers in the tunnel junction. Therefore our experiments extend the range of spintronic devices application to thermoelectricity and provide a crucial piece of information for understanding the physics of thermal spin transport.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا