Do you want to publish a course? Click here

Market Share Analysis with Brand Effect

293   0   0.0 ( 0 )
 Added by Zhixuan Fang
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

In this paper, we investigate the effect of brand in market competition. Specifically, we propose a variant Hotelling model where companies and customers are represented by points in an Euclidean space, with axes being product features. $N$ companies compete to maximize their own profits by optimally choosing their prices, while each customer in the market, when choosing sellers, considers the sum of product price, discrepancy between product feature and his preference, and a companys brand name, which is modeled by a function of its market area of the form $-betacdottext{(Market Area)}^q$, where $beta$ captures the brand influence and $q$ captures how market share affects the brand. By varying the parameters $beta$ and $q$, we derive existence results of Nash equilibrium and equilibrium market prices and shares. In particular, we prove that pure Nash equilibrium always exists when $q=0$ for markets with either one and two dominating features, and it always exists in a single dominating feature market when market affects brand name linearly, i.e., $q=1$. Moreover, we show that at equilibrium, a companys price is proportional to its market area over the competition intensity with its neighbors, a result that quantitatively reconciles the common belief of a companys pricing power. We also study an interesting wipe out phenomenon that only appears when $q>0$, which is similar to the undercut phenomenon in the Hotelling model, where companies may suddenly lose the entire market area with a small price increment. Our results offer novel insight into market pricing and positioning under competition with brand effect.



rate research

Read More

We consider the problem of fair allocation of indivisible goods to $n$ agents, with no transfers. When agents have equal entitlements, the well established notion of the maximin share (MMS) serves as an attractive fairness criterion, where to qualify as fair, an allocation needs to give every agent at least a substantial fraction of her MMS. In this paper we consider the case of arbitrary (unequal) entitlements. We explain shortcomings in previous attempts that extend the MMS to unequal entitlements. Our conceptual contribution is the introduction of a new notion of a share, the AnyPrice share (APS), that is appropriate for settings with arbitrary entitlements. Even for the equal entitlements case, this notion is new, and satisfies $APS ge MMS$, where the inequality is sometimes strict. We present two equivalent definitions for the APS (one as a minimization problem, the other as a maximization problem), and provide comparisons between the APS and previous notions of fairness. Our main result concerns additive valuations and arbitrary entitlements, for which we provide a polynomial-time algorithm that gives every agent at least a $frac{3}{5}$-fraction of her APS. This algorithm can also be viewed as providing strategies in a certain natural bidding game, and these strategies secure each agent at least a $frac{3}{5}$-fraction of her APS.
We study the recently introduced cake-cutting setting in which the cake is represented by an undirected graph. This generalizes the canonical interval cake and allows for modeling the division of road networks. We show that when the graph is a forest, an allocation satisfying the well-known criterion of maximin share fairness always exists. Our result holds even when separation constraints are imposed, in which case no multiplicative approximation of proportionality can be guaranteed. Furthermore, while maximin share fairness is not always achievable for general graphs, we prove that ordinal relaxations can be attained.
108 - Haris Aziz , Bo Li , Xiaowei Wu 2020
We initiate the work on maximin share (MMS) fair allocation of m indivisible chores to n agents using only their ordinal preferences, from both algorithmic and mechanism design perspectives. The previous best-known approximation is 2-1/n by Aziz et al. [IJCAI 2017]. We improve this result by giving a simple deterministic 5/3-approximation algorithm that determines an allocation sequence of agents, according to which items are allocated one by one. By a tighter analysis, we show that for n=2,3, our algorithm achieves better approximation ratios, and is actually optimal. We also consider the setting with strategic agents, where agents may misreport their preferences to manipulate the outcome. We first provide a O(log (m/n))-approximation consecutive picking algorithm, and then improve the approximation ratio to O(sqrt{log n}) by a randomized algorithm. Our results uncover some interesting contrasts between the approximation ratios achieved for chores versus goods.
The problem of allocating scarce items to individuals is an important practical question in market design. An increasingly popular set of mechanisms for this task uses the concept of market equilibrium: individuals report their preferences, have a budget of real or fake currency, and a set of prices for items and allocations is computed that sets demand equal to supply. An important real world issue with such mechanisms is that individual valuations are often only imperfectly known. In this paper, we show how concepts from classical market equilibrium can be extended to reflect such uncertainty. We show that in linear, divisible Fisher markets a robust market equilibrium (RME) always exists; this also holds in settings where buyers may retain unspent money. We provide theoretical analysis of the allocative properties of RME in terms of envy and regret. Though RME are hard to compute for general uncertainty sets, we consider some natural and tractable uncertainty sets which lead to well behaved formulations of the problem that can be solved via modern convex programming methods. Finally, we show that very mild uncertainty about valuations can cause RME allocations to outperform those which take estimates as having no underlying uncertainty.
We study the problem of computing maximin share guarantees, a recently introduced fairness notion. Given a set of $n$ agents and a set of goods, the maximin share of a single agent is the best that she can guarantee to herself, if she would be allowed to partition the goods in any way she prefers, into $n$ bundles, and then receive her least desirable bundle. The objective then in our problem is to find a partition, so that each agent is guaranteed her maximin share. In settings with indivisible goods, such allocations are not guaranteed to exist, so we resort to approximation algorithms. Our main result is a $2/3$-approximation, that runs in polynomial time for any number of agents. This improves upon the algorithm of Procaccia and Wang, which also produces a $2/3$-approximation but runs in polynomial time only for a constant number of agents. To achieve this, we redesign certain parts of their algorithm. Furthermore, motivated by the apparent difficulty, both theoretically and experimentally, in finding lower bounds on the existence of approximate solutions, we undertake a probabilistic analysis. We prove that in randomly generated instances, with high probability there exists a maximin share allocation. This can be seen as a justification of the experimental evidence reported in relevant works. Finally, we provide further positive results for two special cases that arise from previous works. The first one is the intriguing case of $3$ agents, for which it is already known that exact maximin share allocations do not always exist (contrary to the case of $2$ agents). We provide a $7/8$-approximation algorithm, improving the previously known result of $3/4$. The second case is when all item values belong to ${0, 1, 2}$, extending the ${0, 1}$ setting studied in Bouveret and Lema^itre. We obtain an exact algorithm for any number of agents in this case.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا