No Arabic abstract
We present new regular solutions of Einstein-charged scalar field theory in a cavity. The system is enclosed inside a reflecting mirror-like boundary, on which the scalar field vanishes. The mirror is placed at the zero of the scalar field closest to the origin, and inside this boundary our solutions are regular. We study the stability of these solitons under linear, spherically symmetric perturbations of the metric, scalar and electromagnetic fields. If the radius of the mirror is sufficiently large, we present numerical evidence for the stability of the solitons. For small mirror radius, some of the solitons are unstable. We discuss the physical interpretation of this instability.
We discuss charged and static solutions in a shift-symmetric scalar-tensor gravity model including a negative cosmological constant. The solutions are only approximately Anti-de Sitter (AdS) asymptotically. While spherically symmetric black holes with scalar-tensor hair do exist in our model, the uncharged spherically symmetric scalar-tensor solitons constructed recently cannot be generalised to include charge. We point out that this is due to the divergence of the electric monopole at the origin of the coordinate system, while higher order multipoles are well-behaved. We also demonstrate that black holes with scalar hair exist only for horizon value larger than that of the corresponding {it extremal} Reissner-Nordstrom-AdS (RNAdS) solution, i.e. that we cannot construct solutions with arbitrarily small horizon radius. We demonstrate that for fixed $Q$ a horizon radius exists at which the specific heat $C_Q$ diverges - signalling a transition from thermodynamically unstable to stable black holes. In contrast to the RNAdS case, however, we have only been able to construct a stable phase of large horizon black holes, while a stable phase of small horizon black holes does not (seem to) exist.
We studied spherically symmetric solutions in scalar-torsion gravity theories in which a scalar field is coupled to torsion with a derivative coupling. We obtained the general field equations from which we extracted a decoupled master equation, the solution of which leads to the specification of all other unknown functions. We first obtained an exact solution which represents a new wormhole-like solution dressed with a regular scalar field. Then, we found large distance linearized spherically symmetric solutions in which the space asymptotically is AdS.
We study spherically symmetric soliton solutions in a model with a conformally coupled scalar field as well as in full conformal gravity. We observe that a new type of limiting behaviour appears for particular choices of the self-coupling of the scalar field, i.e. the solitons interpolate smoothly between the Anti-de Sitter vacuum and an uncharged configuration. Furthermore, within conformal gravity the qualitative approach of a limiting solution does not change when varying the charge of the scalar field - contrary to the Einstein-Hilbert case. However, it changes with the scalar self-coupling.
It has been shown recently that the strong cosmic censorship conjecture is violated by near-extremal Reissner-Nordstrom-de Sitter black holes. We investigate whether the introduction of a charged scalar field can rescue strong cosmic censorship. We find that such a field improves the situation but there is always a neighbourhood of extremality in which strong cosmic censorship is violated by perturbations arising from smooth initial data.
A numerical analysis shows that a class of scalar-tensor theories of gravity with a scalar field minimally and nonminimally coupled to the curvature allows static and spherically symmetric black hole solutions with scalar-field hair in asymptotically flat spacetimes. In the limit when the horizon radius of the black hole tends to zero, regular scalar solitons are found. The asymptotically flat solutions are obtained provided that the scalar potential $V(phi)$ of the theory is not positive semidefinite and such that its local minimum is also a zero of the potential, the scalar field settling asymptotically at that minimum. The configurations for the minimal coupling case, although unstable under spherically symmetric linear perturbations, are regular and thus can serve as counterexamples to the no-scalar-hair conjecture. For the nonminimal coupling case, the stability will be analyzed in a forthcoming paper.