Do you want to publish a course? Click here

Pixel Detectors ... where do we stand?

73   0   0.0 ( 0 )
 Added by N. Wermes
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Pixel detectors have been the working horse for high resolution, high rate and radiation particle tracking for the past 20 years. The field has spun off into imaging applications with equal uniqueness. Now the move is towards larger integration and fully monolithic devices with to be expected spin-off into imaging again. Many judices and prejudices that were around at times were overcome and surpassed. This paper attempts to give an account of the developments following a line of early prejudices and later insights.



rate research

Read More

This paper presents a review of the topic of galaxy formation and evolution, focusing on basic features of galaxies, and how these observables reveal how galaxies and their stars assemble over cosmic time. I give an overview of the observed properties of galaxies in the nearby universe and for those at higher redshifts up to z~10. This includes a discussion of the major processes in which galaxies assemble and how we can now observe these - including the merger history of galaxies, the gas accretion and star formation rates. I show that for the most massive galaxies mergers and accretion are about equally important in the galaxy formation process between z = 1-3, while this likely differs for lower mass systems. I also discuss the mass differential evolution for galaxies, as well as how environment can affect galaxy evolution, although mass is the primary criteria for driving evolution. I also discuss how we are beginning to measure the dark matter content of galaxies at different epochs as measured through kinematics and clustering. Finally, I review how observables of galaxies, and the observed galaxy formation process, compares with predictions from simulations of galaxy formation, finding significant discrepancies in the abundances of massive galaxies and the merger history. I conclude by examining prospects for the future using JWST, Euclid, SKA, and the ELTs in addressing outstanding issues.
108 - M.Pohlen 2004
In the light of several recent developments we revisit the phenomenon of galactic stellar disk truncations. Even 25 years since the first paper on outer breaks in the radial light profiles of spiral galaxies, their origin is still unclear. The two most promising explanations are that these outer edges either trace the maximum angular momentum during the galaxy formation epoch, or are associated with global star formation thresholds. Depending on their true physical nature, these outer edges may represent an improved size characteristic (e.g., as compared to D_25) and might contain fossil evidence imprinted by the galaxy formation and evolutionary history. We will address several observational aspects of disk truncations: their existence, not only in normal HSB galaxies, but also in LSB and even dwarf galaxies; their detailed shape, not sharp cut-offs as thought before, but in fact demarcating the start of a region with a steeper exponential distribution of starlight; their possible association with bars; as well as problems related to the line-of-sight integration for edge-on galaxies (the main targets for truncation searches so far). Taken together, these observations currently favour the star-formation threshold model, but more work is necessary to implement the truncations as adequate parameters characterising galactic disks.
67 - F. Nicastro 2016
In this article we first review the past decade of efforts in detecting the missing baryons in the Warm Hot Intergalactic Medium (WHIM) and summarize the current state of the art by updating the baryon census and physical state of the detected baryons in the local Universe. We then describe observational strategies that should enable a significant step forward in the next decade, while waiting for the step-up in quality offered by future missions. In particular we design a multi-mega-second and multiple cycle XMM-Newton legacy program (which we name the Ultimate Roaming Baryon Exploration, or URBE) aimed to secure detections of the peaks in the density distribution of the Universe missing baryons over their entire predicted range of temperatures.
83 - Paul Manneville 2016
In this essay, we recall the specificities of the transition to turbulence in wall-bounded flows and present recent achievements in the understanding of this problem. The transition is abrupt with laminar-turbulent coexistence over a finite range of Reynolds numbers, the transitional range. The archetypical cases of Poiseuille pipe flow and plane Couette flow are first reviewed at the phenomenological level, together with a few other flow configurations. Theoretical approaches are then examined with particular emphasis on the existence of special nontrivial solutions to the Navier-Stokes equations at finite distance from laminar flow. Dynamical systems theory is most appropriate to analyze their role, in particular with respect to the transient character of turbulence in the lower transitional range. The extensions needed to deal with the prominent spatiotemporal features of the transition are then discussed. Turbulence growth/decay in terms of statistical physics of many-body systems and the relevance of directed percolation as a stochastic process able to account for it are next scrutinized. To conclude, we advocate the recourse to well-designed modeling able to provide us with a conceptually coherent picture of the full transitional range and put forward some open issues.
82 - M. Swartz 2006
We show that doubly peaked electric fields are necessary to describe grazing-angle charge collection measurements of irradiated silicon pixel sensors. A model of irradiated silicon based upon two defect levels with opposite charge states and the trapping of charge carriers can be tuned to produce a good description of the measured charge collection profiles in the fluence range from 0.5x10^{14} Neq/cm^2 to 5.9x10^{14} Neq/cm^2. The model correctly predicts the variation in the profiles as the temperature is changed from -10C to -25C. The measured charge collection profiles are inconsistent with the linearly-varying electric fields predicted by the usual description based upon a uniform effective doping density. This observation calls into question the practice of using effective doping densities to characterize irradiated silicon. The model is now being used to calibrate pixel hit reconstruction algorithms for CMS.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا