Do you want to publish a course? Click here

Stimulated Black Hole Evaporation

105   0   0.0 ( 0 )
 Added by Marco Spaans
 Publication date 2016
  fields Physics
and research's language is English
 Authors Marco Spaans




Ask ChatGPT about the research

Black holes are extreme expressions of gravity. Their existence is predicted by Einsteins theory of general relativity and is supported by observations. Black holes obey quantum mechanics and evaporate spontaneously. Here it is shown that a mass rate $R_fsim 3times 10^{-8} (M_0/M)^{1/2}$ $M_0$ yr$^{-1}$ onto the horizon of a black hole with mass $M$ (in units of solar mass $M_0$) stimulates a black hole into rapid evaporation. Specifically, $sim 3 M_0$ black holes can emit a large fraction of their mass, and explode, in $M/R_f sim 3times 10^7 (M/M_0)^{3/2}$ yr. These stimulated black holes radiate a spectral line power $P sim 2times 10^{39} (M_0/M)^{1/2}$ erg s$^{-1}$, at a wavelength $lambda sim 3times 10^5 (M/M_0)$ cm. This prediction can be observationally verified.



rate research

Read More

It has been conjectured that Micro Black Holes (MBH) may be formed in the presence of large extra dimensions. These MBHs have very small mass and they decay almost instantaneously. Taking into consideration quantum effects, they should Hawking radiate mainly to Standard Model particles, this radiation then gets modified by the non trivial geometry around the MBHs; the so called greybody factors which filter the Hawking radiation. To test the validity of MBH models, one needs to investigate it experimentally. A primary tool in this investigation is simulation of the MBH formation and evaporation, including all theoretical work that has been performed up to now. BlackMax and CHARYBDIS2 are the most modern and realistic simulators currently available. However they still suffer from a lack of important parameters. In this article we will discuss the primary work that we have done to study the possible changes that can be implemented in the simulations.
Primordial Black Holes (PBHs) are candidates for dark matter as well as ultra-high energy cosmic rays. PBHs are speculated to exist over a large range of masses, from below $10^{15}$ g to $10^3$ M$_odot$. Here we search for PBHs with an initial mass of $sim 10^{15}$ g. Hawking radiation by black holes of this initial mass predicts their evaporation at present time. PBHs are expected to produce copious amounts of high-energy neutrinos and gamma rays right before evaporating. Gamma-ray instruments such as Fermi, VERITAS, HAWC, HESS, and Milagro have conducted searches for evaporating PBHs during their last second to a year of existence. They are able to detect bursts from PBHs in a range of $10^{-3}$ to $0.1$ pc. We present sensitivity to PBH evaporation using one year of neutrino data by IceCube. In these proceedings, we detail the changes to adapt IceCubes standard neutrino flare search, aka time-dependent point source search, into one that is appropriate for evaporating BHs. These proceedings serve as proof of concept for a first-ever search for evaporating PBHs using neutrinos that can use 10 years of IceCube data.
An approach to black hole quantization is proposed wherein it is assumed that quantum coherence is preserved. A consequence of this is that the Penrose diagram describing gravitational collapse will show the same topological structure as flat Minkowski space. After giving our motivations for such a quantization procedure we formulate the background field approximation, in which particles are divided into hard particles and soft particles. The background space-time metric depends both on the in-states and on the out-states. We present some model calculations and extensive discussions. In particular, we show, in the context of a toy model, that the $S$-matrix describing soft particles in the hard particle background of a collapsing star is unitary, nevertheless, the spectrum of particles is shown to be approximately thermal. We also conclude that there is an important topological constraint on functional integrals.
Photon charge has been of interest as a phenomenological testing ground for basic assumptions in fundamental physics. There have been several constraints on the photon charge based on very different considerations. In this paper we put further limits based on the well known properties of charged black holes and their subsequent evaporation by Hawking radiation and the assumption of charge conservation over this long physical process.
Several recent papers have shown a close relationship between entanglement wedge reconstruction and the unitarity of black hole evaporation in AdS/CFT. The analysis of these papers however has a rather puzzling feature: all calculations are done using bulk dynamics which are essentially those Hawking used to predict information loss, but applying ideas from entanglement wedge reconstruction seems to suggest a Page curve which is consistent with information conservation. Why should two different calculations in the same model give different answers for the Page curve? In this note we present a new pair of models which clarify this situation. Our first model gives a holographic illustration of unitary black hole evaporation, in which the analogue of the Hawking radiation purifies itself as expected, and this purification is reproduced by the entanglement wedge analysis. Moreover a smooth black hole interior persists until the last stages the evaporation process. Our second model gives an alternative holographic interpretation of the situation where the bulk evolution leads to information loss: unlike in the models proposed so far, this bulk information loss is correctly reproduced by the entanglement wedge analysis. This serves as an illustration that quantum extremal surfaces are in some sense kinematic: the time-dependence of the entropy they compute depends on the choice of bulk dynamics. In both models no bulk quantum corrections need to be considered: classical extremal surfaces are enough to do the job. We argue that our first model is the one which gives the right analogy for what actually happens to evaporating black holes, but we also emphasize that any complete resolution of the information problem will require an understanding of non-perturbative bulk dynamics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا