Do you want to publish a course? Click here

Bounds on Photon Charge from Evaporation of Massive Black Holes

119   0   0.0 ( 0 )
 Added by Arun Kenath Mr
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Photon charge has been of interest as a phenomenological testing ground for basic assumptions in fundamental physics. There have been several constraints on the photon charge based on very different considerations. In this paper we put further limits based on the well known properties of charged black holes and their subsequent evaporation by Hawking radiation and the assumption of charge conservation over this long physical process.



rate research

Read More

143 - C Sivaram 2010
The no-hair theorem, which postulates that all black holes can be completely characterized by only three externally observable parameters: mass, electric charge, and angular momentum, sets constraints on both the maximal angular momentum and maximal electric charge. In this work, we would explore the consequence of these for the formation of primordial black holes in the early universe and also the formation of black holes due to collapse of dark matter configurations and how this could be used to probe the conditions in the very early universe and constrain the epoch when baryon asymmetry was established.
Stellar-mass Primordial Black Holes (PBH) have been recently reconsidered as a Dark Matter (DM) candidate, after the aLIGO discovery of several binary BH mergers with masses of tens of $M_odot$. Matter accretion on such massive objects leads to the emission of high-energy photons, capable of altering the ionization and thermal history of the universe. This in turn affects the statistical properties of the cosmic microwave background (CMB) anisotropies. Previous analyses have assumed spherical accretion. We argue that this approximation likely breaks down and that an accretion disk should form in the dark ages. Using the most up-to-date tools to compute the energy deposition in the medium, we derive constraints on the fraction of DM in PBH. Provided that disks form early on, even under conservative assumptions for accretion, these constraints exclude a monochromatic distribution of PBH with masses above $sim 2, M_odot$ as the dominant form of DM. The bound on the median PBH mass gets more stringent if a broad, log-normal mass function is considered. A deepened understanding of non-linear clustering properties and BH accretion disk physics would permit an improved treatment and possibly lead to more stringent constraints.
104 - Marco Spaans 2016
Black holes are extreme expressions of gravity. Their existence is predicted by Einsteins theory of general relativity and is supported by observations. Black holes obey quantum mechanics and evaporate spontaneously. Here it is shown that a mass rate $R_fsim 3times 10^{-8} (M_0/M)^{1/2}$ $M_0$ yr$^{-1}$ onto the horizon of a black hole with mass $M$ (in units of solar mass $M_0$) stimulates a black hole into rapid evaporation. Specifically, $sim 3 M_0$ black holes can emit a large fraction of their mass, and explode, in $M/R_f sim 3times 10^7 (M/M_0)^{3/2}$ yr. These stimulated black holes radiate a spectral line power $P sim 2times 10^{39} (M_0/M)^{1/2}$ erg s$^{-1}$, at a wavelength $lambda sim 3times 10^5 (M/M_0)$ cm. This prediction can be observationally verified.
We use recent progress in simulating the production of magnetohydrodynamic jets around black holes to derive the cosmic spin history of the most massive black holes, with masses >~10^8 Msol. Assuming the jet efficiency depends on spin a, we can approximately reproduce the observed `radio loudness of quasars and the local radio luminosity function. Using the X-ray luminosity function and the local mass function of supermassive black holes, SMBHs we can reproduce the individual radio luminosity functions of radio sources showing high- and low-excitation narrow emission lines. The data favour spin distributions that are bimodal, with one component around spin zero and the other close to maximal spin. In the low-excitation galaxies, the two components have similar amplitudes. For the high-excitation galaxies, the amplitude of the high-spin peak is typically much smaller than that of the low-spin peak. A bimodality should be seen in the radio loudness of quasars. We predict that the low-excitation galaxies are dominated by SMBHs with masses >~10^8 Msol, down to radio luminosity densities ~10^21 W Hz-1 sr-1 at 1.4~GHz. Our model is also able to predict the radio luminosity function at z=1, and predicts it to be dominated by high-excitation galaxies above luminosity densities >~10^26 W Hz-1 sr-1, in full agreement with the observations. From our parametrisation and using the best fitting jet efficiencies there is marginal evidence for evolution in spin: the mean spin increases slightly from <a>~0.25 at z=1 to <a>~0.35 at z=0, and the fraction of SMBHs with a>=0.5 increases from 0.16+-0.03 at z=1 to 0.24+-0.09 at z=0. Our results are in excellent agreement with the mean radiative efficiency of quasars, as well as recent cosmological simulations. We discuss the implications in terms of accretion and SMBH mergers, and galactic black holes (Abridged).
We investigate the abundance of Super-Massive Black Hole (SMBH) seeds in primordial galaxy halos. We explore the assumption that dark matter halos outgrowing a critical halo mass M_c have some probability p of having spawned a SMBH seed. Current observations of local, intermediate-mass galaxies constrain these parameters: For $M_c=10^{11}M_odot$, all halos must be seeded, but when adopting smaller M_c masses the seeding can be much less efficient. The constraints also put lower limits on the number density of black holes in the local and high-redshift Universe. Reproducing z~6 quasar space densities depends on their typical halo mass, which can be constrained by counting nearby Lyman Break Galaxies and Lyman Alpha Emitters. For both observables, our simulations demonstrate that single-field predictions are too diverse to make definitive statements, in agreement with mixed claims in the literature. If quasars are not limited to the most massive host halos, they may represent a tiny fraction (~10^-5) of the SMBH population. Finally, we produce a wide range of predictions for gravitational events from SMBH mergers. We define a new diagnostic diagram for LISA to measure both SMBH space density and the typical delay between halo merger and black hole merger. While previous works have explored specific scenarios, our results hold independent of the seed mechanism, seed mass, obscuration, fueling methods and duty cycle.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا