Do you want to publish a course? Click here

Accurate Text Localization in Natural Image with Cascaded Convolutional Text Network

56   0   0.0 ( 0 )
 Added by Weilin Huang
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We introduce a new top-down pipeline for scene text detection. We propose a novel Cascaded Convolutional Text Network (CCTN) that joints two customized convolutional networks for coarse-to-fine text localization. The CCTN fast detects text regions roughly from a low-resolution image, and then accurately localizes text lines from each enlarged region. We cast previous character based detection into direct text region estimation, avoiding multiple bottom- up post-processing steps. It exhibits surprising robustness and discriminative power by considering whole text region as detection object which provides strong semantic information. We customize convolutional network by develop- ing rectangle convolutions and multiple in-network fusions. This enables it to handle multi-shape and multi-scale text efficiently. Furthermore, the CCTN is computationally efficient by sharing convolutional computations, and high-level property allows it to be invariant to various languages and multiple orientations. It achieves 0.84 and 0.86 F-measures on the ICDAR 2011 and ICDAR 2013, delivering substantial improvements over state-of-the-art results [23, 1].



rate research

Read More

404 - Zhi Tian , Weilin Huang , Tong He 2016
We propose a novel Connectionist Text Proposal Network (CTPN) that accurately localizes text lines in natural image. The CTPN detects a text line in a sequence of fine-scale text proposals directly in convolutional feature maps. We develop a vertical anchor mechanism that jointly predicts location and text/non-text score of each fixed-width proposal, considerably improving localization accuracy. The sequential proposals are naturally connected by a recurrent neural network, which is seamlessly incorporated into the convolutional network, resulting in an end-to-end trainable model. This allows the CTPN to explore rich context information of image, making it powerful to detect extremely ambiguous text. The CTPN works reliably on multi-scale and multi- language text without further post-processing, departing from previous bottom-up methods requiring multi-step post-processing. It achieves 0.88 and 0.61 F-measure on the ICDAR 2013 and 2015 benchmarks, surpass- ing recent results [8, 35] by a large margin. The CTPN is computationally efficient with 0:14s/image, by using the very deep VGG16 model [27]. Online demo is available at: http://textdet.com/.
In this paper, we develop a binary convolutional encoder-decoder network (B-CEDNet) for natural scene text processing (NSTP). It converts a text image to a class-distinguished salience map that reveals the categorical, spatial and morphological information of characters. The existing solutions are either memory consuming or run-time consuming that cannot be applied to real-time applications on resource-constrained devices such as advanced driver assistance systems. The developed network can process multiple regions containing characters by one-off forward operation, and is trained to have binary weights and binary feature maps, which lead to both remarkable inference run-time speedup and memory usage reduction. By training with over 200, 000 synthesis scene text images (size of $32times128$), it can achieve $90%$ and $91%$ pixel-wise accuracy on ICDAR-03 and ICDAR-13 datasets. It only consumes $4.59 ms$ inference run-time realized on GPU with a small network size of 2.14 MB, which is up to $8times$ faster and $96%$ smaller than it full-precision version.
Text-based image captioning (TextCap) which aims to read and reason images with texts is crucial for a machine to understand a detailed and complex scene environment, considering that texts are omnipresent in daily life. This task, however, is very challenging because an image often contains complex texts and visual information that is hard to be described comprehensively. Existing methods attempt to extend the traditional image captioning methods to solve this task, which focus on describing the overall scene of images by one global caption. This is infeasible because the complex text and visual information cannot be described well within one caption. To resolve this difficulty, we seek to generate multiple captions that accurately describe different parts of an image in detail. To achieve this purpose, there are three key challenges: 1) it is hard to decide which parts of the texts of images to copy or paraphrase; 2) it is non-trivial to capture the complex relationship between diverse texts in an image; 3) how to generate multiple captions with diverse content is still an open problem. To conquer these, we propose a novel Anchor-Captioner method. Specifically, we first find the important tokens which are supposed to be paid more attention to and consider them as anchors. Then, for each chosen anchor, we group its relevant texts to construct the corresponding anchor-centred graph (ACG). Last, based on different ACGs, we conduct multi-view caption generation to improve the content diversity of generated captions. Experimental results show that our method not only achieves SOTA performance but also generates diverse captions to describe images.
Recent learning-based approaches show promising performance improvement for scene text removal task. However, these methods usually leave some remnants of text and obtain visually unpleasant results. In this work, we propose a novel end-to-end framework based on accurate text stroke detection. Specifically, we decouple the text removal problem into text stroke detection and stroke removal. We design a text stroke detection network and a text removal generation network to solve these two sub-problems separately. Then, we combine these two networks as a processing unit, and cascade this unit to obtain the final model for text removal. Experimental results demonstrate that the proposed method significantly outperforms the state-of-the-art approaches for locating and erasing scene text. Since current publicly available datasets are all synthetic and cannot properly measure the performance of different methods, we therefore construct a new real-world dataset, which will be released to facilitate the relevant research.
Image-text matching has received growing interest since it bridges vision and language. The key challenge lies in how to learn correspondence between image and text. Existing works learn coarse correspondence based on object co-occurrence statistics, while failing to learn fine-grained phrase correspondence. In this paper, we present a novel Graph Structured Matching Network (GSMN) to learn fine-grained correspondence. The GSMN explicitly models object, relation and attribute as a structured phrase, which not only allows to learn correspondence of object, relation and attribute separately, but also benefits to learn fine-grained correspondence of structured phrase. This is achieved by node-level matching and structure-level matching. The node-level matching associates each node with its relevant nodes from another modality, where the node can be object, relation or attribute. The associated nodes then jointly infer fine-grained correspondence by fusing neighborhood associations at structure-level matching. Comprehensive experiments show that GSMN outperforms state-of-the-art methods on benchmarks, with relative Recall@1 improvements of nearly 7% and 2% on Flickr30K and MSCOCO, respectively. Code will be released at: https://github.com/CrossmodalGroup/GSMN.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا