No Arabic abstract
We propose a novel Connectionist Text Proposal Network (CTPN) that accurately localizes text lines in natural image. The CTPN detects a text line in a sequence of fine-scale text proposals directly in convolutional feature maps. We develop a vertical anchor mechanism that jointly predicts location and text/non-text score of each fixed-width proposal, considerably improving localization accuracy. The sequential proposals are naturally connected by a recurrent neural network, which is seamlessly incorporated into the convolutional network, resulting in an end-to-end trainable model. This allows the CTPN to explore rich context information of image, making it powerful to detect extremely ambiguous text. The CTPN works reliably on multi-scale and multi- language text without further post-processing, departing from previous bottom-up methods requiring multi-step post-processing. It achieves 0.88 and 0.61 F-measure on the ICDAR 2013 and 2015 benchmarks, surpass- ing recent results [8, 35] by a large margin. The CTPN is computationally efficient with 0:14s/image, by using the very deep VGG16 model [27]. Online demo is available at: http://textdet.com/.
We introduce a new top-down pipeline for scene text detection. We propose a novel Cascaded Convolutional Text Network (CCTN) that joints two customized convolutional networks for coarse-to-fine text localization. The CCTN fast detects text regions roughly from a low-resolution image, and then accurately localizes text lines from each enlarged region. We cast previous character based detection into direct text region estimation, avoiding multiple bottom- up post-processing steps. It exhibits surprising robustness and discriminative power by considering whole text region as detection object which provides strong semantic information. We customize convolutional network by develop- ing rectangle convolutions and multiple in-network fusions. This enables it to handle multi-shape and multi-scale text efficiently. Furthermore, the CCTN is computationally efficient by sharing convolutional computations, and high-level property allows it to be invariant to various languages and multiple orientations. It achieves 0.84 and 0.86 F-measures on the ICDAR 2011 and ICDAR 2013, delivering substantial improvements over state-of-the-art results [23, 1].
Arbitrary shape text detection is a challenging task due to the high complexity and variety of scene texts. In this work, we propose a novel adaptive boundary proposal network for arbitrary shape text detection, which can learn to directly produce accurate boundary for arbitrary shape text without any post-processing. Our method mainly consists of a boundary proposal model and an innovative adaptive boundary deformation model. The boundary proposal model constructed by multi-layer dilated convolutions is adopted to produce prior information (including classification map, distance field, and direction field) and coarse boundary proposals. The adaptive boundary deformation model is an encoder-decoder network, in which the encoder mainly consists of a Graph Convolutional Network (GCN) and a Recurrent Neural Network (RNN). It aims to perform boundary deformation in an iterative way for obtaining text instance shape guided by prior information from the boundary proposal model. In this way, our method can directly and efficiently generate accurate text boundaries without complex post-processing. Extensive experiments on publicly available datasets demonstrate the state-of-the-art performance of our method.
Image-text matching has received growing interest since it bridges vision and language. The key challenge lies in how to learn correspondence between image and text. Existing works learn coarse correspondence based on object co-occurrence statistics, while failing to learn fine-grained phrase correspondence. In this paper, we present a novel Graph Structured Matching Network (GSMN) to learn fine-grained correspondence. The GSMN explicitly models object, relation and attribute as a structured phrase, which not only allows to learn correspondence of object, relation and attribute separately, but also benefits to learn fine-grained correspondence of structured phrase. This is achieved by node-level matching and structure-level matching. The node-level matching associates each node with its relevant nodes from another modality, where the node can be object, relation or attribute. The associated nodes then jointly infer fine-grained correspondence by fusing neighborhood associations at structure-level matching. Comprehensive experiments show that GSMN outperforms state-of-the-art methods on benchmarks, with relative Recall@1 improvements of nearly 7% and 2% on Flickr30K and MSCOCO, respectively. Code will be released at: https://github.com/CrossmodalGroup/GSMN.
Recent end-to-end trainable methods for scene text spotting, integrating detection and recognition, showed much progress. However, most of the current arbitrary-shape scene text spotters use region proposal networks (RPN) to produce proposals. RPN relies heavily on manually designed anchors and its proposals are represented with axis-aligned rectangles. The former presents difficulties in handling text instances of extreme aspect ratios or irregular shapes, and the latter often includes multiple neighboring instances into a single proposal, in cases of densely oriented text. To tackle these problems, we propose Mask TextSpotter v3, an end-to-end trainable scene text spotter that adopts a Segmentation Proposal Network (SPN) instead of an RPN. Our SPN is anchor-free and gives accurate representations of arbitrary-shape proposals. It is therefore superior to RPN in detecting text instances of extreme aspect ratios or irregular shapes. Furthermore, the accurate proposals produced by SPN allow masked RoI features to be used for decoupling neighboring text instances. As a result, our Mask TextSpotter v3 can handle text instances of extreme aspect ratios or irregular shapes, and its recognition accuracy wont be affected by nearby text or background noise. Specifically, we outperform state-of-the-art methods by 21.9 percent on the Rotated ICDAR 2013 dataset (rotation robustness), 5.9 percent on the Total-Text dataset (shape robustness), and achieve state-of-the-art performance on the MSRA-TD500 dataset (aspect ratio robustness). Code is available at: https://github.com/MhLiao/MaskTextSpotterV3
Image-text matching plays a central role in bridging the semantic gap between vision and language. The key point to achieve precise visual-semantic alignment lies in capturing the fine-grained cross-modal correspondence between image and text. Most previous methods rely on single-step reasoning to discover the visual-semantic interactions, which lacks the ability of exploiting the multi-level information to locate the hierarchical fine-grained relevance. Different from them, in this work, we propose a step-wise hierarchical alignment network (SHAN) that decomposes image-text matching into multi-step cross-modal reasoning process. Specifically, we first achieve local-to-local alignment at fragment level, following by performing global-to-local and global-to-global alignment at context level sequentially. This progressive alignment strategy supplies our model with more complementary and sufficient semantic clues to understand the hierarchical correlations between image and text. The experimental results on two benchmark datasets demonstrate the superiority of our proposed method.