Do you want to publish a course? Click here

Quantum coherent three-terminal thermoelectrics: maximum efficiency at given power output

123   0   0.0 ( 0 )
 Added by Robert Whitney S.
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the nonlinear scattering theory for three-terminal thermoelectric devices, used for power generation or refrigeration. Such systems are quantum phase-cohere



rate research

Read More

Efficiency at maximum power (MP) output for an engine with a passive piston without mechanical controls between two reservoirs is theoretically studied. We enclose a hard core gas partitioned by a massive piston in a temperature-controlled container and analyze the efficiency at MP under a heating and cooling protocol without controlling the pressure acting on the piston from outside. We find the following three results: (i) The efficiency at MP for a dilute gas is close to the Chambadal-Novikov-Curzon-Ahlborn (CNCA) efficiency if we can ignore the side wall friction and the loss of energy between a gas particle and the piston, while (ii) the efficiency for a moderately dense gas becomes smaller than the CNCA efficiency even when the temperature difference of reservoirs is small. (iii) Introducing the Onsager matrix for an engine with a passive piston, we verify that the tight coupling condition for the matrix of the dilute gas is satisfied, while that of the moderately dense gas is not satisfied because of the inevitable heat leak. We confirm the validity of these results using the molecular dynamics simulation and introducing an effective mean-field-like model which we call stochastic mean field model.
We introduce a simple two-level heat engine to study the efficiency in the condition of the maximum power output, depending on the energy levels from which the net work is extracted. In contrast to the quasi-statically operated Carnot engine whose efficiency reaches the theoretical maximum, recent research on more realistic engines operated in finite time has revealed other classes of efficiency such as the Curzon-Ahlborn efficiency maximizing the power output. We investigate yet another side with our heat engine model, which consists of pure relaxation and net work extraction processes from the population difference caused by different transition rates. Due to the nature of our model, the time-dependent part is completely decoupled from the other terms in the generated work. We derive analytically the optimal condition for transition rates maximizing the generated power output and discuss its implication on general premise of realistic heat engines. In particular, the optimal engine efficiency of our model is different from the Curzon-Ahlborn efficiency, although they share the universal linear and quadratic coefficients at the near-equilibrium limit. We further confirm our results by taking an alternative approach in terms of the entropy production at hot and cold reservoirs.
123 - Tim Schmiedl , Udo Seifert 2008
Molecular motors transduce chemical energy obtained from hydrolizing ATP into mechanical work exerted against an external force. We calculate their efficiency at maximum power output for two simple generic models and show that the qualitative behaviour depends crucially on the position of the transition state. Specifically, we find a transition state near the initial state (sometimes characterized as a power stroke) to be most favorable with respect to both high power output and high efficiency at maximum power. In this regime, driving the motor further out of equilibrium by applying higher chemical potential differences can even, counter-intuitively, increase the efficiency.
This mini-review is intended as a short introduction to electron flow in nanostructures. Its aim is to provide a brief overview of this topic for people who are interested in the thermodynamics of quantum systems but know little about nanostructures. We particularly emphasize devices that work in the steady-state, such as simple thermoelectrics, but also mention cyclically driven heat engines. We do not aim to be either complete or rigorous, but use a few pages to outline some of the main ideas in the topic.
Efficiency at maximum power (EMP) is a very important specification for a heat engine to evaluate the capacity of outputting adequate power with high efficiency. It has been proved theoretically that the limit EMP of thermoelectric heat engine can be achieved with the hypothetical boxcar-shaped electron transmission, which is realized here by the resonant tunneling in the one-dimensional symmetric InP/InSe superlattice. It is found with the transfer matrix method that a symmetric mode is robust that regardless of the periodicity, and the obtained boxcar-like electron transmission stems from the strong coupling between symmetric mode and Fabry-Perot modes inside the allowed band. High uniformity of the boxcar-like transmission and the sharp drop of the transmission edge are both beneficial to the maximum power and the EMP, which are optimized by the bias voltage and the thicknesses of barrier and well. The maximum power and EMP are extracted with the help of machine learning technique, and more than 95% of their theoretical limits can both be achieved for smaller temperature difference, smaller barrier width and larger well width. We hope the obtain results could provide some basic guidance for the future designs of high EMP thermoelectric heat engines.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا