No Arabic abstract
We discuss two semi-independent calibration techniques used to determine the in-flight radiometric calibration for the New Horizons Multi-spectral Visible Imaging Camera (MVIC). The first calibration technique compares the observed stellar flux to modeled values. The difference between the two provides a calibration factor that allows the observed flux to be adjusted to the expected levels for all observations, for each detector. The second calibration technique is a channel-wise relative radiometric calibration for MVICs blue, near-infrared and methane color channels using observations of Charon and scaling from the red channel stellar calibration. Both calibration techniques produce very similar results (better than 7% agreement), providing strong validation for the techniques used. Since the stellar calibration can be performed without a color target in the field of view and covers all of MVICs detectors, this calibration was used to provide the radiometric keywords delivered by the New Horizons project to the Planetary Data System (PDS). These keywords allow each observation to be converted from counts to physical units; a description of how these keywords were generated is included. Finally, mitigation techniques adopted for the gain drift observed in the near-infrared detector and one of the panchromatic framing cameras is also discussed.
The Optical Navigation Camera (ONC-T, ONC-W1, ONC-W2) onboard Hayabusa2 are also being used for scientific observations of the mission target, C-complex asteroid 162173 Ryugu. Science observations and analyses require rigorous instrument calibration. In order to meet this requirement, we have conducted extensive inflight observations during the 3.5 years of cruise after the launch of Hayabusa2 on 3 December 2014. In addition to the first inflight calibrations by Suzuki et al. (2018), we conducted an additional series of calibrations, including read-out smear, electronic-interference noise, bias, dark current, hot pixels, sensitivity, linearity, flat-field, and stray light measurements for the ONC. Moreover, the calibrations, especially flat-fields and sensitivities, of ONC-W1 and -W2 are updated for the analysis of the low-altitude (i.e., high-resolution) observations, such as the gravity measurement, touchdowns, and the descents for MASCOT and MINERVA-II payload releases. The radiometric calibration for ONC-T is also updated in this study based on star and Moon observations. Our updated inflight sensitivity measurements suggest the accuracy of the absolute radiometric calibration contains less than 1.8% error for the ul-, b-, v-, Na-, w-, and x-bands based on star calibration observations and ~5% for the p-band based on lunar calibration observations. The radiance spectra of the Moon, Jupiter, and Saturn from the ONC-T show good agreement with the spacecraft-based observations of the Moon from SP/SELENE and WAC/LROC and with ground-based telescopic observations for Jupiter and Saturn.
The LOng Range Reconnaissance Imager (LORRI) is a panchromatic (360--910 nm), narrow-angle (field of view = 0.29 deg), high spatial resolution (pixel scale = 1.02 arcsec) visible light imager used on NASAs New Horizons (NH) mission for both science observations and optical navigation. Calibration observations began several months after the NH launch on 2006 January 19 and have been repeated annually throughout the course of the mission, which is ongoing. This paper describes the in-flight LORRI calibration measurements, and the results derived from our analysis of the calibration data. LORRI has been remarkably stable over time with no detectable changes (at the 1% level) in sensitivity or optical performance since launch. By employing 4 by 4 re-binning of the CCD pixels during read out, a special spacecraft tracking mode, exposure times of 30 sec, and co-addition of approximately 100 images, LORRI can detect unresolved targets down to V = 22 (SNR=5). LORRI images have an instantaneous dynamic range of 3500, which combined with exposure time control ranging from 0ms to 64,967 ms in 1ms steps supports high resolution, high sensitivity imaging of planetary targets spanning heliocentric distances from Jupiter to deep in the Kuiper belt, enabling a wide variety of scientific investigations. We describe here how to transform LORRI images from raw (engineering) units into scientific (calibrated) units for both resolved and unresolved targets. We also describe various instrumental artifacts that could affect the interpretation of LORRI images under some observing circumstances.
Multispectral imaging plays an important role in many applications from astronomical imaging, earth observation to biomedical imaging. However, the current technologies are complex with multiple alignment-sensitive components, predetermined spatial and spectral parameters by manufactures. Here, we demonstrate a single-shot multispectral imaging technique that gives flexibility to end-users with a very simple optical setup, thank to spatial correlation and spectral decorrelation of speckle patterns. These seemingly random speckle patterns are point spreading functions (PSFs) generated by light from point sources propagating through a strongly scattering medium. The spatial correlation of PSFs allows image recovery with deconvolution techniques, while the spectral decorrelation allows them to play the role of tune-able spectral filters in the deconvolution process. Our demonstrations utilizing optical physics of strongly scattering media and computational imaging present the most cost-effective approach for multispectral imaging with great advantages.
We present results of inflight calibration of the point spread function (PSF) of the Soft X-ray Telescope (SXT-S) that focuses X-ray onto the pixel array of the Soft X-ray Spectrometer system (SXS). We make a full array image of a point-like source by extracting a pulsed component of the Crab nebula emission. Within the limited statistics afforded by an exposure time of only 6.9~ksec and the limited knowledge of the systematic uncetainties, we find that the raytracing model of 1.2 half-power-diameter (HPD) is consistent with an image of the observed event distributions across pixels. The ratio between the Crab pulsar image and the raytracing shows scatter from pixel to pixel that is 40% or less in all except one pixel. The pixel-to-pixel ratio has a spread of 20%, on average, for the 15 edge pixels, with an averaged statistical error of 17% (1 sigma). In the central 16 pixels, the corresponding ratio is 15% with an error of 6%.
Consumer cameras, particularly onboard smartphones and UAVs, are now commonly used as scientific instruments. However, their data processing pipelines are not optimized for quantitative radiometry and their calibration is more complex than that of scientific cameras. The lack of a standardized calibration methodology limits the interoperability between devices and, in the ever-changing market, ultimately the lifespan of projects using them. We present a standardized methodology and database (SPECTACLE) for spectral and radiometric calibrations of consumer cameras, including linearity, bias variations, read-out noise, dark current, ISO speed and gain, flat-field, and RGB spectral response. This includes golden standard ground-truth methods and do-it-yourself methods suitable for non-experts. Applying this methodology to seven popular cameras, we found high linearity in RAW but not JPEG data, inter-pixel gain variations >400% correlated with large-scale bias and read-out noise patterns, non-trivial ISO speed normalization functions, flat-field correction factors varying by up to 2.79 over the field of view, and both similarities and differences in spectral response. Moreover, these results differed wildly between camera models, highlighting the importance of standardization and a centralized database.