No Arabic abstract
We present results of inflight calibration of the point spread function (PSF) of the Soft X-ray Telescope (SXT-S) that focuses X-ray onto the pixel array of the Soft X-ray Spectrometer system (SXS). We make a full array image of a point-like source by extracting a pulsed component of the Crab nebula emission. Within the limited statistics afforded by an exposure time of only 6.9~ksec and the limited knowledge of the systematic uncetainties, we find that the raytracing model of 1.2 half-power-diameter (HPD) is consistent with an image of the observed event distributions across pixels. The ratio between the Crab pulsar image and the raytracing shows scatter from pixel to pixel that is 40% or less in all except one pixel. The pixel-to-pixel ratio has a spread of 20%, on average, for the 15 edge pixels, with an averaged statistical error of 17% (1 sigma). In the central 16 pixels, the corresponding ratio is 15% with an error of 6%.
We present the result of the in-flight calibration of the effective area of the Soft X-ray Spectrometer (SXS) onboard the Hitomi X-ray satellite using an observation of the Crab nebula. We corrected for the artifacts when observing high count rate sources with the X-ray microcalorimeter. We then constructed a spectrum in the 0.5-20 keV band, which we modeled with a single power-law continuum attenuated by an interstellar extinction. We evaluated the systematic uncertainty upon the spectral parameters by various calibration items. In the 2-12 keV band, the SXS result is consistent with the literature values in flux (2.20 $pm$ 0.08) $times$10$^{-8}$ erg s$^{-1}$ cm$^{-2}$ with a 1$sigma$ statistical uncertainty) but is softer in the power-law index (2.19 $pm$ 0.11). The discrepancy is attributable to the systematic uncertainty of about $+$6/$-$7% and $+$2/$-$5% respectively for the flux and the power-law index. The softer spectrum is affected primarily by the systematic uncertainty of the Dewar gate valve transmission and the event screening.
The Soft X-ray Imager (SXI) is an imaging spectrometer using charge-coupled devices (CCDs) aboard the Hitomi X-ray observatory. The SXI sensor has four CCDs with an imaging area size of $31~{rm mm} times 31~{rm mm}$ arranged in a $2 times 2$ array. Combined with the X-ray mirror, the Soft X-ray Telescope, the SXI detects X-rays between $0.4~{rm keV}$ and $12~{rm keV}$ and covers a $38^{prime} times 38^{prime}$ field-of-view. The CCDs are P-channel fully-depleted, back-illumination type with a depletion layer thickness of $200~mu{rm m}$. Low operation temperature down to $-120~^circ{rm C}$ as well as charge injection is employed to reduce the charge transfer inefficiency of the CCDs. The functionality and performance of the SXI are verified in on-ground tests. The energy resolution measured is $161$-$170~{rm eV}$ in full width at half maximum for $5.9~{rm keV}$ X-rays. In the tests, we found that the CTI of some regions are significantly higher. A method is developed to properly treat the position-dependent CTI. Another problem we found is pinholes in the Al coating on the incident surface of the CCDs for optical light blocking. The Al thickness of the contamination blocking filter is increased in order to sufficiently block optical light.
We make the in-orbit calibration to the point-spread functions (PSFs) of the collimators of the Hard X-ray Modulation Telescope with the scanning observation of the Crab. We construct the empirical adjustments to the theoretically calculated geometrical PSFs. The adjustments contain two parts: a rotating matrix to adjust the directional deviation of the collimators and a paraboloidal function to correct the inhomogeneity of the real PSFs. The parameters of the adjusting matrices and paraboloidal functions are determined by fitting the scanning data with lower scanning speed and smaller intervals during the calibration observations. After the PSF calibration, the systematic errors in source localization in the Galactic plane scanning survey are 0.010 deg, 0.015 deg, 0.113 deg for the Low-Energy Telescope (LE), the Medium-Energy telescope (ME) and the High-Energy telescope (HE), respectively; meanwhile, the systematic errors in source flux estimation are 1.8%, 1.6%, 2.7% for LE, ME and HE, respectively.
The Crab nebula originated from a core-collapse supernova (SN) explosion observed in 1054 A.D. When viewed as a supernova remnant (SNR), it has an anomalously low observed ejecta mass and kinetic energy for an Fe-core collapse SN. Intensive searches were made for a massive shell that solves this discrepancy, but none has been detected. An alternative idea is that the SN1054 is an electron-capture (EC) explosion with a lower explosion energy by an order of magnitude than Fe-core collapse SNe. In the X-rays, imaging searches were performed for the plasma emission from the shell in the Crab outskirts to set a stringent upper limit to the X-ray emitting mass. However, the extreme brightness of the source hampers access to its vicinity. We thus employed spectroscopic technique using the X-ray micro-calorimeter onboard the Hitomi satellite. By exploiting its superb energy resolution, we set an upper limit for emission or absorption features from yet undetected thermal plasma in the 2-12 keV range. We also re-evaluated the existing Chandra and XMM-Newton data. By assembling these results, a new upper limit was obtained for the X-ray plasma mass of <~ 1Mo for a wide range of assumed shell radius, size, and plasma temperature both in and out of the collisional equilibrium. To compare with the observation, we further performed hydrodynamic simulations of the Crab SNR for two SN models (Fe-core versus EC) under two SN environments (uniform ISM versus progenitor wind). We found that the observed mass limit can be compatible with both SN models if the SN environment has a low density of <~ 0.03 cm-3 (Fe core) or <~ 0.1 cm-3 (EC) for the uniform density, or a progenitor wind density somewhat less than that provided by a mass loss rate of 10-5 Mo yr-1 at 20 km s-1 for the wind environment.
We describe the in-orbit performance of the soft X-ray imaging system consisting of the Soft X-ray Telescope and the Soft X-ray Imager aboard Hitomi. Verification and calibration of imaging and spectroscopic performance are carried out making the best use of the limited data of less than three weeks. Basic performance including a large field of view of 38x38 is verified with the first light image of the Perseus cluster of galaxies. Amongst the small number of observed targets, the on-minus-off pulse image for the out-of-time events of the Crab pulsar enables us to measure a half power diameter of the telescope as about 1.3. The average energy resolution measured with the onboard calibration source events at 5.89 keV is 179 pm 3 eV in full width at half maximum. Light leak and cross talk issues affected the effective exposure time and the effective area, respectively, because all the observations were performed before optimizing an observation schedule and parameters for the dark level calculation. Screening the data affected by these two issues, we measure the background level to be 5.6x10^{-6} counts s^{-1} arcmin^{-2} cm^{-2} in the energy band of 5-12 keV, which is seven times lower than that of the Suzaku XIS-BI.