Do you want to publish a course? Click here

From maps between coloured operads to Swiss-Cheese algebras

87   0   0.0 ( 0 )
 Added by Julien Ducoulombier
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In the present work, we extract pairs of topological spaces from maps between coloured operads. We prove that those pairs are weakly equivalent to explicit algebras over the one dimensional Swiss-Cheese operad SC_{1}. Thereafter, we show that the pair formed by the space of long knots and the polynomial approximation of (k)-immerions from R^{d} to R^{n} is an SC_{d+1}-algebra assuming the Dwyer-Hessconjecture.



rate research

Read More

123 - Rune Haugseng 2019
Using the description of enriched $infty$-operads as associative algebras in symmetric sequences, we define algebras for enriched $infty$-operads as certain modules in symmetric sequences. For $mathbf{V}$ a nice symmetric monoidal model category, we prove that strict algebras for $Sigma$-cofibrant operads in $mathbf{V}$ are equivalent to algebras in the associated symmetric monoidal $infty$-category in this sense. We also show that $mathcal{O}$-algebras in $mathcal{V}$ can equivalently be described as morphisms of $infty$-operads from $mathcal{O}$ to endomorphism operads of (families of) objects of $mathcal{V}$.
Swiss cheese sets are compact subsets of the complex plane obtained by deleting a sequence of open disks from a closed disk. Such sets have provided numerous counterexamples in the theory of uniform algebras. In this paper, we introduce a topological space whose elements are what we call abstract Swiss cheeses. Working within this topological space, we show how to prove the existence of classical Swiss cheese sets (as discussed in a paper of Feinstein and Heath from 2010) with various desired properties. We first give a new proof of the Feinstein-Heath classicalisation theorem. We then consider when it is possible to classicalise a Swiss cheese while leaving disks which lie outside a given region unchanged. We also consider sets obtained by deleting a sequence of open disks from a closed annulus, and we obtain an analogue of the Feinstein-Heath theorem for these sets. We then discuss regularity for certain uniform algebras. We conclude with an application of these techniques to obtain a classical Swiss cheese set which has the same properties as a non-classical example of OFarrell (1979).
In this work we provide a definition of a coloured operad as a monoid in some monoidal category, and develop the machinery of Grobner bases for coloured operads. Among the examples for which we show the existance of a quadratic Grobner basis we consider the seminal Lie-Rinehart operad whose algebras include pairs (functions, vector fields).
A sequence of Constant-Mean-Curvature(CMC) slices in the Swiss-Cheese(SC) Universe is investigated. We focus on the CMC slices which smoothly connect to the homogeneous time slices in the Einstein-de Sitter region in the SC universe. It is shown that the slices do not pass through the black hole region but white hole region.
We present a model of (modified) gravity on spacetimes with fractal structure based on packing of spheres, which are (Euclidean) variants of the Packed Swiss Cheese Cosmology models. As the action functional for gravity we consider the spectral action of noncommutative geometry, and we compute its expansion on a space obtained as an Apollonian packing of 3-dimensional spheres inside a 4-dimensional ball. Using information from the zeta function of the Dirac operator of the spectral triple, we compute the leading terms in the asymptotic expansion of the spectral action. They consist of a zeta regularization of a divergent sum which involves the leading terms of the spectral actions of the individual spheres in the packing. This accounts for the contribution of the points 1 and 3 in the dimension spectrum (as in the case of a 3-sphere). There is an additional term coming from the residue at the additional point in the real dimension spectrum that corresponds to the packing constant, as well as a series of fluctuations coming from log-periodic oscillations, created by the points of the dimension spectrum that are off the real line. These terms detect the fractality of the residue set of the sphere packing. We show that the presence of fractality influences the shape of the slow-roll potential for inflation, obtained from the spectral action. We also discuss the effect of truncating the fractal structure at a certain scale related to the energy scale in the spectral action.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا