Do you want to publish a course? Click here

Negative magnetoresistance in viscous flow of two-dimensional electrons

93   0   0.0 ( 0 )
 Added by Pavel Alekseev
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

At low temperatures, in very clean two-dimensional (2D) samples the electron mean free path for collisions with static defects and phonons becomes greater than the sample width. Under this condition, the electron transport occurs by formation of a viscous flow of an electron fluid. We study the viscous flow of 2D electrons in a magnetic field perpendicular to the 2D layer. We calculate the viscosity coefficients as the functions of magnetic field and temperature. The off-diagonal viscosity coefficient determines the dispersion of the 2D hydrodynamic waves. The decrease of the diagonal viscosity in magnetic field leads to negative magnetoresistance which is temperature- and size dependent. Our analysis demonstrates that the viscous mechanism is responsible for the giant negative magnetoresistance recently observed in the ultra-high-mobility GaAs quantum wells. We conclude that 2D electrons in that structures in moderate magnetic fields should be treated as a viscous fluid.



rate research

Read More

We report non-local electrical measurements in a mesoscopic size two-dimensional (2D) electron gas in a GaAs quantum well in a hydrodynamic regime. Viscous electric flow is expected to be dominant when electron-electron collisions occur more often than the impurity or phonon scattering events. We observe a negative nonlocal resistance and attribute it to the formation of whirlpools in the electron flow. We use the different nonlocal transport geometries and compare the results with a theory demonstrating the significance of hydrodynamics in mesoscopic samples.
The electronic analog of the Poiseuille flow is the transport in a narrow channel with disordered edges that scatter electrons in a diffuse way. In the hydrodynamic regime, the resistivity decreases with temperature, referred to as the Gurzhi effect, distinct from conventional Ohmic behaviour. We studied experimentally an electronic analog of the Stokes flow around a disc immersed in a two-dimensional viscous liquid. The circle obstacle results in an additive contribution to resistivity. If specular boundary conditions apply, it is no longer possible to detect Poiseuille type flow and the Gurzhi effect. However, in flow through a channel with a circular obstacle, the resistivity decreases with temperature. By tuning the temperature, we observed the transport signatures of the ballistic and hydrodynamic regimes on the length scale of disc size. Our experimental results confirm theoretical predictions.
In ultra-high quality two-dimensional (2D) materials the mean free paths of phonons and electrons relative to all mechanisms of scattering can be much greater than a size of a sample. In this case the most intensive type of scattering of particles is their collisions with sample edges and the ballistic regime of heat and charge transport is realized. We study the ballistic transport of classical interacting 2D particles in a long narrow sample. We show that the inter-particle scattering conserving momentum leads to a positive hydrodynamic correction to the ballistic conductance, which is a precursor of the viscous Poiseuille flow. We examine the effect of weak magnetic field on the electron ballistic conductance and predict a novel classical ballistic mechanism for negative magnetoresistance. Our analysis demonstrates that, apparently, such mechanism explains the temperature-independent part of the giant negative magnetoresistance recently observed in the ultra-high mobility GaAs quantum wells.
We develop a theory of magnetoresistance of two-dimensional electron systems in a smooth disorder potential in the hydrodynamic regime. Our theory applies to two-dimensional semiconductor structures with strongly correlated carriers when the mean free path due to electron-electron collisions is sufficiently short. The dominant contribution to magnetoresistance arises from the modification of the flow pattern by the Lorentz force, rather than the magnetic field dependence of the kinetic coefficients of the electron liquid. The resulting magnetoresistance is positive and quadratic at weak fields. Although the resistivity is governed by both viscosity and thermal conductivity of the electron fluid, the magnetoresistance is controlled by the viscosity only. This enables extraction of viscosity of the electron liquid from magnetotransport measurements.
We report the observation of commensurability oscillations in an AlAs two-dimensional electron system where two conduction-band valleys with elliptical in-plane Fermi contours are occupied. The Fourier power spectrum of the oscillations shows two frequency components consistent with those expected for the Fermi contours of the two valleys. From an analysis of the spectra we deduce $m_l/m_t=5.2pm0.5$ for the ratio of the longitudinal and transverse electron effective masses.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا