Do you want to publish a course? Click here

High Tc via spin fluctuations from incipient bands: application to monolayers and intercalates of FeSe

226   0   0.0 ( 0 )
 Added by Andreas Linscheid
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate superconductivity in a two-band system with an electron- and hole-like band, where one of the bands is away from the Fermi level (or incipient). We argue that the incipient band contributes significantly to spin-fluctuation pairing in the strong coupling limit where the system is close to a magnetic instability, and can lead to a large Tc. In this case, Tc is limited by a competition between the frequency range of the coupling (set by an isolated paramagnon) and the coupling strength itself, such that a dome-like Tc dependence on the incipient band position is obtained. The coupling of electrons to phonons is found to further enhance Tc. The results are discussed in the context of experiments on monolayers and intercalates of FeSe.



rate research

Read More

143 - J. P. Sun , G. Z. Ye , P. Shahi 2016
The importance of electron-hole interband interactions is widely acknowledged for iron-pnictide superconductors with high transition temperatures (Tc). However, high-Tc superconductivity without hole carriers has been suggested in FeSe single-layer films and intercalated iron-selenides, raising a fundamental question whether iron pnictides and chalcogenides have different pairing mechanisms. Here, we study the properties of electronic structure in the high-Tc phase induced by pressure in bulk FeSe from magneto-transport measurements and first-principles calculations. With increasing pressure, the low-Tc superconducting phase transforms into high-Tc phase, where we find the normal-state Hall resistivity changes sign from negative to positive, demonstrating dominant hole carriers in striking contrast to other FeSe-derived high-Tc systems. Moreover, the Hall coefficient is remarkably enlarged and the magnetoresistance exhibits anomalous scaling behaviors, evidencing strongly enhanced interband spin fluctuations in the high-Tc phase. These results in FeSe highlight similarities with high-Tc phases of iron pnictides, constituting a step toward a unified understanding of iron-based superconductivity.
Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF) to the ab-plane conductivity above Tc in a series of YBa2Cu3O(6+x). These experiments allow us to determine the field Hc(T) and the temperature Tc above which the SCFs are fully suppressed. A careful investigation near optimal doping shows that Tc is higher than the pseudogap temperature T*, which is an unambiguous evidence that the pseudogap cannot be assigned to preformed pairs. Accurate determinations of the SCF contribution to the conductivity versus temperature and magnetic field have been achieved. They can be accounted for by thermal fluctuations following the Ginzburg-Landau scheme for nearly optimally doped samples. A phase fluctuation contribution might be invoked for the most underdoped samples in a T range which increases when controlled disorder is introduced by electron irradiation. Quantitative analysis of the fluctuating magnetoconductance allows us to determine the critical field Hc2(0) which is found to be be quite similar to Hc(0) and to increase with hole doping. Studies of the incidence of disorder on both Tc and T* allow us to propose a three dimensional phase diagram including a disorder axis, which allows to explain most observations done in other cuprate families.
Superconductivity is significantly enhanced in monolayer FeSe grown on SrTiO3, but not for multilayer films, in which large strength of nematicity develops. However, the link between the high-transition temperature superconductivity in monolayer and the correlation related nematicity in multilayer FeSe films is not well understood. Here, we use low-temperature scanning tunneling microscopy to study few-layer FeSe thin films grown by molecular beam epitaxy. We observe an incommensurate long-range smectic phase, which solely appears in bilayer FeSe films. The smectic order still locally exists and gradually fades away with increasing film thickness, while it suddenly vanishes in monolayer FeSe, indicative of an abrupt smectic phase transition. Surface alkali-metal doping can suppress the smectic phase and induce high-Tc superconductivity in bilayer FeSe. Our observations provide evidence that the monolayer FeSe is in close proximity to the smectic phase, and its superconductivity is likely enhanced by this electronic instability as well.
In contrast to bulk FeSe, which exhibits nematic order and low temperature superconductivity, atomic layers of FeSe reverse the situation, having high temperature superconductivity appearing alongside a suppression of nematic order. To investigate this phenomenon, we study a minimal electronic model of FeSe, with interactions that enhance nematic fluctuations. This model is sign problem free, and is simulated using determinant quantum Monte Carlo (DQMC). We developed a DQMC algorithm with parallel tempering, which proves to be an efficient source of global updates and allows us to access the region of strong interactions. Over a wide range of intermediate couplings, we observe superconductivity with an extended s-wave order parameter, along with enhanced, but short ranged, $q=(0,0)$ ferro-orbital (nematic) order. These results are consistent with approximate weak coupling treatments that predict that nematic fluctuations lead to superconducting pairing. Surprisingly, in the parameter range under study, we do not observe nematic long range order. Instead, at stronger coupling an unusual insulating phase with $q=(pi,pi)$ antiferro-orbital order appears, which is missed by weak coupling approximations.
Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF) to the ab-plane conductivity above Tc in a series of YBa2Cu3O6+x single crystals. The fluctuation conductivity is found to vanish nearly exponentially with temperature, allowing us to determine precisely the field Hc(T) and the temperature Tc above which the SCFs are fully suppressed. Tc is always found much smaller than the pseudogap temperature. A careful investigation near optimal doping shows that Tc is higher than the pseudogap T*, which indicates that the pseudogap cannot be assigned to preformed pairs. For nearly optimally doped samples, the fluctuation conductivity can be accounted for by gaussian fluctuations following the Ginzburg-Landau scheme. A phase fluctuation contribution might be invoked for the most underdoped samples in a T range which increases when controlled disorder is introduced by electron irradiation. Quantitative analysis of the fluctuating magnetoconductance allows us to determine the critical field Hc2(0) which is found to be quite similar to Hc(0) and to increase with hole doping. Studies of the incidence of disorder on both Tc and T* enable us to propose a three dimensional phase diagram including a disorder axis, which allows to explain most observations done in other cuprate families.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا