Do you want to publish a course? Click here

Incommensurate smectic phase in close proximity to the high-Tc superconductor FeSe/SrTiO3

167   0   0.0 ( 0 )
 Added by Wei Li
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Superconductivity is significantly enhanced in monolayer FeSe grown on SrTiO3, but not for multilayer films, in which large strength of nematicity develops. However, the link between the high-transition temperature superconductivity in monolayer and the correlation related nematicity in multilayer FeSe films is not well understood. Here, we use low-temperature scanning tunneling microscopy to study few-layer FeSe thin films grown by molecular beam epitaxy. We observe an incommensurate long-range smectic phase, which solely appears in bilayer FeSe films. The smectic order still locally exists and gradually fades away with increasing film thickness, while it suddenly vanishes in monolayer FeSe, indicative of an abrupt smectic phase transition. Surface alkali-metal doping can suppress the smectic phase and induce high-Tc superconductivity in bilayer FeSe. Our observations provide evidence that the monolayer FeSe is in close proximity to the smectic phase, and its superconductivity is likely enhanced by this electronic instability as well.



rate research

Read More

A nematic transition preceding a long-range spin density wave antiferromagnetic phase is a common feature of many Fe based superconductors. However, in the FeSe system with a nematic transition at $T_{rm s} approx$ 90 K no evidence for long-range static magnetism down to very low temperature was found. The lack of magnetism is a challenge for the theoretical description of FeSe. Here, we investigated high-quality single crystals of FeSe using high-field (up to 9.5 Tesla) muon spin rotation ($mu$SR) measurements. The $mu$SR Knight shift and the bulk susceptibility linearly scale at high temperatures but deviate from this behavior around $T^{*} sim 10$ K, where the Knight shift exhibits a kink. This behavior hints to an essential change of the electronic and/or magnetic properties crossing the region near $T^{*}$. In the temperature range $T_{rm s} gtrsim T gtrsim T^{*}$ the muon spin depolarization rate follows a critical behavior $Lambda propto T^{-0.4}$. The observed non-Fermi liquid behavior with a cutoff at $T^{*}$ indicates that FeSe is in the vicinity to a antiferromagnetic quantum critical point. Our analysis is suggestive for $T^{*}$ triggered by the Lifshitz transition.
107 - B. Lei , J. H. Cui , Z. J. Xiang 2015
In contrast to bulk FeSe superconductor, heavily electron-doped FeSe-derived superconductors show relatively high Tc without hole Fermi surfaces and nodal superconducting gap structure, which pose great challenges on pairing theories in the iron-based superconductors. In the heavily electron-doped FeSe-based superconductors, the dominant factors and the exact working mechanism that is responsible for the high Tc need to be clarified. In particular, a clean control of carrier concentration remains to be a challenge for revealing how superconductivity and Fermi surface topology evolves with carrier concentration in bulk FeSe. Here, we report the evolution of superconductivity in the FeSe thin flake with systematically regulated carrier concentrations by liquid-gating technique. High-temperature superconductivity at 48 K can be achieved only with electron doping tuned by gate voltage in FeSe thin flake with Tc less than 10 K. This is the first time to achieve such a high temperature superconductivity in FeSe without either epitaxial interface or external pressure. It definitely proves that the simple electron-doping process is able to induce high-temperature superconductivity with Tc as high as 48 K in bulk FeSe. Intriguingly, our data also indicates that the superconductivity is suddenly changed from low-Tc phase to high-Tc phase with a Lifshitz transition at certain carrier concentration. These results help us to build a unified picture to understand the high-temperature superconductivity among all FeSe-derived superconductors and shed light on further pursuit of higher Tc in these materials.
123 - Y. Zhou , L. Miao , P. Wang 2016
Single monolayer FeSe film grown on Nb-doped SrTiO$_3$(001) substrate shows the highest superconducting transition temperature (T$_C$ $sim$ 100 K) among the iron-based superconductors (iron-pnictide), while T$_C$ of bulk FeSe is only $sim$ 8 K. Antiferromagnetic spin fluctuations were believed to be crucial in iron-pnictides, which has inspired several proposals to understand the FeSe/SrTiO$_3$ system. Although bulk FeSe does not show the antiferromagnetic order, calculations suggest that the parent FeSe/SrTiO$_3$ films are AFM. Experimentally, due to lacking of direct probe, the magnetic state of FeSe/SrTiO$_3$ films remains mysterious. Here, we report the direct evidences of the antiferromagnetic order in the parent FeSe/SrTiO$_3$ films by the magnetic exchange bias effect measurements. The phase transition temperature is $geq$ 140 K for single monolayer film. The AFM order disappears after electron doping.
Carrier injection performed in oxygen-deficient YBa2Cu3O7(YBCO) hetero-structure junctions exhibited tunable resistance that was entirely different with behaviors of semiconductor devices. Tunable superconductivity in YBCO junctions, increasing over 20 K in transition temperature, has achieved by using electric processes. To our knowledge, this is the first observation that intrinsic property of high TC superconductors superconductivity can be adjusted as tunable functional parameters of devices. The fantastic phenomenon caused by carrier injection was discussed based on a proposed charge carrier self-trapping model and BCS theory.
The Nernst effect in metals is highly sensitive to two kinds of phase transition: superconductivity and density-wave order. The large positive Nernst signal observed in hole-doped high-Tc superconductors above their transition temperature Tc has so far been attributed to fluctuating superconductivity. Here we show that in some of these materials the large Nernst signal is in fact caused by stripe order, a form of spin / charge modulation which causes a reconstruction of the Fermi surface. In LSCO doped with Nd or Eu, the onset of stripe order causes the Nernst signal to go from small and negative to large and positive, as revealed either by lowering the hole concentration across the quantum critical point in Nd-LSCO, or lowering the temperature across the ordering temperature in Eu-LSCO. In the latter case, two separate peaks are resolved, respectively associated with the onset of stripe order at high temperature and superconductivity near Tc. This sensitivity to Fermi-surface reconstruction makes the Nernst effect a promising probe of broken symmetry in high-Tc superconductors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا