Do you want to publish a course? Click here

High-Tc superconductivity in FeSe at high pressure: Dominant hole carriers and enhanced spin fluctuations

144   0   0.0 ( 0 )
 Added by Jinguang Cheng
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The importance of electron-hole interband interactions is widely acknowledged for iron-pnictide superconductors with high transition temperatures (Tc). However, high-Tc superconductivity without hole carriers has been suggested in FeSe single-layer films and intercalated iron-selenides, raising a fundamental question whether iron pnictides and chalcogenides have different pairing mechanisms. Here, we study the properties of electronic structure in the high-Tc phase induced by pressure in bulk FeSe from magneto-transport measurements and first-principles calculations. With increasing pressure, the low-Tc superconducting phase transforms into high-Tc phase, where we find the normal-state Hall resistivity changes sign from negative to positive, demonstrating dominant hole carriers in striking contrast to other FeSe-derived high-Tc systems. Moreover, the Hall coefficient is remarkably enlarged and the magnetoresistance exhibits anomalous scaling behaviors, evidencing strongly enhanced interband spin fluctuations in the high-Tc phase. These results in FeSe highlight similarities with high-Tc phases of iron pnictides, constituting a step toward a unified understanding of iron-based superconductivity.



rate research

Read More

140 - G. Garbarino , A. Sow , P. Lejay 2009
We have studied the structural and superconducting properties of tetragonal FeSe under pressures up to 26GPa using synchrotron radiation and diamond anvil cells. The bulk modulus of the tetragonal phase is 28.5(3)GPa, much smaller than the rest of Fe based superconductors. At 12GPa we observe a phase transition from the tetragonal to an orthorhombic symmetry. The high pressure orthorhombic phase has a higher Tc reaching 34K at 22GPa.
A huge enhancement of the superconducting transition temperature Tc was observed in tetragonal FeSe superconductor under high pressure. The onset temperature became as high as 27 K at 1.48 GPa and the pressure coefficient showed a huge value of 9.1 K/GPa. The upper critical field Hc2 was estimated to be ~ 72 T at 1.48 GPa. Because of the high Hc2, FeSe system may be a candidate for application as superconducting wire rods. Moreover, the investigation of superconductivity on simple structured FeSe may provide important clues to the mechanism of superconductivity in iron-based superconductors.
185 - P. Zhang , X.-L. Peng , T. Qian 2015
It is well known that superconductivity in Fe-based materials is favoured under tetragonal symmetry, whereas competing orders such as spin-density-wave (SDW) and nematic orders emerge or are reinforced upon breaking the fourfold (C4) symmetry. Accordingly, suppression of orthorhombicity below the superconducting transition temperature (Tc) is found in underdoped compounds. Epitaxial film growth on selected substrates allows the design of crystal specific lattice distortions. Here we show that despite the breakdown of the C4 symmetry induced by a 5% difference in the lattice parameters, monolayers of FeSe grown by molecular beam epitaxy (MBE) on the (110) surface of SrTiO3 (STO) substrates [FeSe/STO(110)] exhibit a large nearly isotropic superconducting (SC) gap of 16 meV closing around 60 K. Our results on this new interfacial material, similar to those obtained previously on FeSe/STO(001), contradict the common belief that the C4 symmetry is essential for reaching high Tcs in Fe-based superconductors.
225 - A. Linscheid , S. Maiti , Y. Wang 2016
We investigate superconductivity in a two-band system with an electron- and hole-like band, where one of the bands is away from the Fermi level (or incipient). We argue that the incipient band contributes significantly to spin-fluctuation pairing in the strong coupling limit where the system is close to a magnetic instability, and can lead to a large Tc. In this case, Tc is limited by a competition between the frequency range of the coupling (set by an isolated paramagnon) and the coupling strength itself, such that a dome-like Tc dependence on the incipient band position is obtained. The coupling of electrons to phonons is found to further enhance Tc. The results are discussed in the context of experiments on monolayers and intercalates of FeSe.
81 - H. Rosner , A. Kitaigorodsky , 2001
The layered lithium borocarbide LiBC, isovalent with and structurally similar to the superconductor MgB2, is an insulator due to the modulation within the hexagonal layers (BC vs. B2). We show that hole-doping of LiBC results in Fermi surfaces of B-C p sigma character that couple very strongly to B-C bond stretching modes, precisely the features that lead to superconductivity at Tc = 40 K in MgB2. Comparison of Li{0.5}BC with MgB2 indicates the former to be a prime candidate for electron-phonon coupled superconductivity at substantially higher temperature than in MgB2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا