No Arabic abstract
We introduce a potentially powerful method for constraining or discovering a thin dark matter disk in the Milky Way. The method relies on the relationship between the midplane densities and scale heights of interstellar gas being determined by the gravitational potential, which is sensitive to the presence of a dark disk. We show how to use the interstellar gas parameters to set a bound on a dark disk and discuss the constraints suggested by the current data. However, current measurements for these parameters are discordant, with the uncertainty in the constraint being dominated by the molecular hydrogen midplane density measurement, as well as by the atomic hydrogen velocity dispersion measurement. Magnetic fields and cosmic ray pressure, which are expected to play a role, are uncertain as well. The current models and data are inadequate to determine the disks existence, but, taken at face value, may favor its existence depending on the gas parameters used.
We update the method of the Holmberg & Flynn (2000) study, including an updated model of the Milky Ways interstellar gas, radial velocities, an updated reddening map, and a careful statistical analysis, to bound the allowed surface density and scale height of a dark disk. We pay careful attention to the self-consistency of the model, including the gravitational influence of the dark disk on other disk components, and to the net velocity of the tracer stars. We find that the data set exhibits a non-zero bulk velocity in the vertical direction as well as a displacement from the expected location at the Galactic midplane. If not properly accounted for, these features would bias the bound toward low dark disk mass. We therefore perform our analysis two ways. In the first, traditional method, we subtract the mean velocity and displacement from the tracers phase space distributions. In the second method, we perform a non-equilibrium version of the HF method to derive a bound on the dark disk parameters for an oscillating tracer distribution. Despite updates in the mass model and reddening map, the traditional method results remain consistent with those of HF2000. The second, non-equilibrium technique, however, allows a surface density as large as $14, M_odot,{rm pc}^{-2}$ (and as small as 0), demonstrating much weaker constraints. For both techniques, the bound on surface density is weaker for larger scale height. In future analyses of Gaia data, it will be important to verify whether the tracer populations are in equilibrium.
We present the serendipitous discovery of an extremely broad ($Delta V_{LSR} sim 150$ km/s), faint ($T_{mb} < 10 textrm{mK}$), and ubiquitous 1667 and 1665 MHz ground-state thermal OH emission towards the 2nd quadrant of the outer Galaxy ($R_{gal}$ > 8 kpc) with the Green Bank Telescope. Originally discovered in 2015, we describe the redundant experimental, observational, and data quality tests of this result over the last five years. The longitude-velocity distribution of the emission unambiguously suggests large-scale Galactic structure. We observe a smooth distribution of OH in radial velocity that is morphologically similar to the HI radial velocity distribution in the outer Galaxy, showing that molecular gas is significantly more extended in the outer Galaxy than previously expected. Our results imply the existence of a thick ($-200< z < 200$ pc) disk of diffuse ($n_{H_{2}}$ $sim$ 5 $times$ 10$^{-3}$ cm$^{-3}$) molecular gas in the Outer Galaxy previously undetected in all-sky CO surveys.
Stars and planets are formed inside dense interstellar molecular clouds, by processes imprinted on the 3-dimensional (3D) morphology of the clouds. Determining the 3D structure of interstellar clouds remains challenging, due to projection effects and difficulties measuring their extent along the line of sight. We report the detection of normal vibrational modes in the isolated interstellar cloud Musca, allowing determination of the 3D physical dimensions of the cloud. Musca is found to be vibrating globally, with the characteristic modes of a sheet viewed edge-on, not a filament as previously supposed. We reconstruct the physical properties of Musca through 3D magnetohydrodynamic simulations, reproducing the observed normal modes and confirming a sheet-like morphology.
A thick dark matter disk is predicted in cold dark matter simulations as the outcome of the interaction between accreted satellites and the stellar disk in Milky Way sized halos. We study the effects of a self-interacting thick dark disk on the energetic neutrino flux from the Sun. We find that for particle masses between 100 GeV and 1 TeV and dark matter annihilation to heavy leptons either the self-interaction may not be strong enough to solve the small scale structure motivation or a dark disk cannot be present in the Milky Way.
Interstellar dark clouds are the sites of star formation. Their main component, dihydrogen, exists under two states, ortho and para. H2 is supposed to form in the ortho:para ratio (OPR) of 3:1 and to subsequently decay to almost pure para-H2 (OPR <= 0.001). Only if the H2 OPR is low enough, will deuteration enrichment, as observed in the cores of these clouds, be efficient. The second condition for strong deuteration enrichment is the local disappearance of CO, which freezes out onto grains in the core formation process. We show that this latter condition does not apply to DCO+, which, therefore, should be present all over the cloud. We find that an OPR >= 0.1 is necessary to prevent DCO+ large-scale apparition. We conclude that the inevitable decay of ortho-H2 sets an upper limit of ~6 million years to the age of starless molecular clouds under usual conditions.