No Arabic abstract
Cu(pz)2(ClO4)2 (with pz denoting pyrazine, C4H4N2) is among the best realizations of a two-dimensional spin-1/2 square-lattice antiferromagnet. Below T_N = 4.21 K, its weak interlayer couplings induce a 3D magnetic order, strongly influenced by external magnetic fields and/or hydrostatic pressure. Previous work, focusing on the [H, T] phase diagram, identified a spin-flop transition, resulting in a field-tunable bicritical point. However, the influence of external pressure has not been investigated yet. Here we explore the extended [p, H, T] phase diagram of Cu(pz)2(ClO4)2 under pressures up to 12 kbar and magnetic fields up to 7.1 T, via magnetometry and 35Cl nuclear magnetic resonance (NMR) measurements. The application of magnetic fields enhances T_XY , the crossover temperature from the Heisenberg to the XY model, thus pointing to an enhancement of the effective anisotropy. The applied pressure has an opposite effect [dT_N/dp = 0.050(8) K/kbar], as it modifies marginally the interlayer couplings, but likely changes more significantly the orbital reorientation and the square-lattice deformation. This results in a remodeling of the effective Hamiltonian, whereby the field and pressure effects compensate each other. Finally, by comparing the experimental data with numerical simulations we estimate T_BKT, the temperature of the Berezinskii-Kosterlitz-Thouless topological transition and argue why it is inaccessible in our case.
The perovskite Ba8CoNb6O24 comprises equilateral effective spin-1/2 Co2+ triangular layers separated by six non-magnetic layers. Susceptibility, specific heat and neutron scattering measurements combined with high-temperature series expansions and spin-wave calculations confirm that Ba8CoNb6O24 is basically a twodimensional (2D) magnet with no detectable spin anisotropy and no long-range magnetic ordering down to 0.06 K. In other words, Ba8CoNb6O24 is very close to be a realization of the paradigmatic spin-1/2 triangular Heisenberg model, which is not expected to exhibit symmetry breaking at finite temperature according to the Mermin and Wagner theorem.
We study the spin liquid candidate of the spin-$1/2$ $J_1$-$J_2$ Heisenberg antiferromagnet on the triangular lattice by means of density matrix renormalization group (DMRG) simulations. By applying an external Aharonov-Bohm flux insertion in an infinitely long cylinder, we find unambiguous evidence for gapless $U(1)$ Dirac spin liquid behavior. The flux insertion overcomes the finite size restriction for energy gaps and clearly shows gapless behavior at the expected wave-vectors. Using the DMRG transfer matrix, the low-lying excitation spectrum can be extracted, which shows characteristic Dirac cone structures of both spinon-bilinear and monopole excitations. Finally, we confirm that the entanglement entropy follows the predicted universal response under the flux insertion.
Magnetic excitations of the quasi-1D S=1/2 Heisenberg antiferromagnet (HAF) Cs2CuCl4 have been measured as a function of magnetic field using neutron scattering. For T<0.62 K and B=0 T the weak inter-chain coupling produces 3D incommensurate ordering. Fields greater than Bc =1.66 T, but less than the field (~8 T) required to fully align the spins, are observed to decouple the chains, and the system enters a disordered intermediate-field phase (IFP). The IFP excitations are in agreement with the predictions of Muller et al. for the 1D S=1/2 HAF, and Talstra and Haldane for the related 1/r^2 chain (the Haldane-Shastry model). This behaviour is inconsistent with linear spin-wave theory.
We believe that a necessary first step in understanding the ground state properties of the spin-${scriptstylefrac{1}{2}}$ kagome Heisenberg antiferromagnet is a better understanding of this models very large number of low energy singlet states. A description of the low energy states that is both accurate and amenable for numerical work may ultimately prove to have greater value than knowing only what these properties are, in particular when these turn on the delicate balance of many small energies. We demonstrate how this program would be implemented using the basis of spin-singlet dimerized states, though other bases that have been proposed may serve the same purpose. The quality of a basis is evaluated by its participation in all the low energy singlets, not just the ground state. From an experimental perspective, and again in light of the small energy scales involved, methods that can deliver all the low energy states promise more robust predictions than methods that only refine a fraction of these states.
We successfully synthesize single crystals of the verdazyl radical $alpha$-2,3,5-Cl$_3$-V. $Ab$ $initio$ molecular orbital calculations indicate that the two dominant antiferromagnetic interactions, $J_{rm{1}}$ and $J_{rm{2}}$ ($alpha =J_{rm{2}}/J_{rm{1}}simeq 0.56$), form an $S$ = 1/2 distorted square lattice. We explain the magnetic properties based on the $S$ = 1/2 square lattice Heisenberg antiferromagnet using the quantum Monte Carlo method, and examine the effects of the lattice distortion and the interplane interaction contribution. In the low-temperature regions below 6.4 K, we observe anisotropic magnetic behavior accompanied by a phase transition to a magnetically ordered state. The electron spin resonance signals exhibit anisotropic behavior in the temperature dependence of the resonance field and the linewidth. We explain the frequency dependence of the resonance fields in the ordered phase using a mean-field approximation with out-of-plane easy-axis anisotropy, which causes a spin-flop phase transition at approximately 0.4 T for the field perpendicular to the plane. Furthermore, the anisotropic dipole field provides supporting information regarding the presence of the easy-axis anisotropy. These results demonstrate that the lattice distortion, anisotropy, and interplane interaction of this model are sufficiently small that they do not affect the intrinsic behavior of the $S$ = 1 / 2 square lattice Heisenberg antiferromagnet.